Answer:
what are the roles of minerals in maintaning homeostasis?
Answer:
The chemist can either:
a. Use a small fractionation apparatus.
b. Add a compound with a much higher boiling point.
Explanation:
Using a smaller fractionation apparatus or Vigreux column will help to minimize loss of the distillate.
If a compound with a higher boiling point is added, the vapors of this liquid will displace the vapors of this small amount of compound with a lower boiling point. This compound with a higher boiling point is known as a Chaser.
90 grams due to laws of conservation of mass. Output mass = input mass. Mass can never be created or destroyed.
Answer:
0.01917 m^3/kg.
Explanation:
Given:
P = 15 MPa
= 1.5 × 10^4 kPa
T = 350 °C
= 350 + 273
= 623 K
Molar mass of water, m = (2 × 1) + 16
= 18 g/mol
= 0.018 kg/mol
R = 0.4615 kPa·m3/kg·K
Using ideal gas equation,
P × V = n × R × T
But n = mass/molar mass
V = (R × T)/P
V/M = (R × T)/P × m
= (0.4615 × 623)/1.5 × 10^4
= 0.01917 m^3/kg.
Answer:
Explanation:
a) In an exothermic reaction, the energy transferred to the surroundings from forming new bonds is ___more____ than the energy needed to break existing bonds.
b) In an endothermic reaction, the energy transferred to the surroundings from forming new bonds is ___less____ than the energy needed to break existing bonds.
c) The energy change of an exothermic reaction has a _____negative_______ sign.
d) The energy change of an endothermic reaction has a ____positive________ sign.
The energy changes occur during the bonds formation and bonds breaking.
There are two types of reaction endothermic and exothermic reaction.
Endothermic reactions:
The type of reactions in which energy is absorbed are called endothermic reactions.
In this type of reaction energy needed to break the bond are higher than the energy released during bond formation.
For example:
C + H₂O → CO + H₂
ΔH = +131 kj/mol
it can be written as,
C + H₂O + 131 kj/mol → CO + H₂
Exothermic reaction:
The type of reactions in which energy is released are called exothermic reactions.
In this type of reaction energy needed to break the bonds are less than the energy released during the bond formation.
For example:
Chemical equation:
C + O₂ → CO₂
ΔH = -393 Kj/mol
it can be written as,
C + O₂ → CO₂ + 393 Kj/mol