Answer:
191.36 N/m
Explanation:
From the question,
The Potential Energy of the safe = Energy of the spring when it was compressed.
mgh = 1/2ke²............... Equation 1
Where m = mass of the safe, g = acceleration due to gravity, h = height of the save above the heavy duty spring , k = spring constant, e = compression
Making k the subject of the equation,
k =2mgh/e²................ Equation 2
Given: m = 1100 kg, h = 2.4 mm = 0.0024 m, e = 0.52 m
Constant: g = 9.8 m/s²
Substitute into equation 2
k = 2(1100)(9.8)(0.0024)/0.52²
k = 51.744/0.2704
k = 191.36 N/m
Hence the spring constant of the heavy-duty spring = 191.36 N/m
Answer:
52.49 Kg
Explanation:
Let m1 and v1 denote your mass and velocity respectively
Let m2 and v2 denote your friends mass and velocity respectively
Kinetic energy is given by
Since your kinetic energies are the same hence
and making m2 the subject then
Since v2 is v1+0.28v1=1.28v1
Substituting m1 for 86 Kg
M1 v1 = (m1 + m2)v2.
All of the exponents should be lowered to the bottom right of the letters.
Answer:
ok what do you need to know about ''campaign against crime''?
Explanation: