We will first record its mass and then its volume by measuring its dimensions
then divide mass by volume and will get density of regular solid
Answer:
Av = 25 [m/s]
Explanation:
To solve this problem we must use the definition of speed, which is defined as the relationship between distance over time. for this case we have.

where:
Av = speed [km/h] or [m/s]
distance = 180 [km]
time = 2 [hr]
Therefore the speed is equal to:
![Av = \frac{180}{2} \\Av = 90 [km/h]](https://tex.z-dn.net/?f=Av%20%3D%20%5Cfrac%7B180%7D%7B2%7D%20%5C%5CAv%20%3D%2090%20%5Bkm%2Fh%5D)
Now we must convert from kilometers per hour to meters per second
![90[\frac{km}{h}]*1000[\frac{m}{1km}]*1[\frac{h}{3600s} ]= 25 [m/s]](https://tex.z-dn.net/?f=90%5B%5Cfrac%7Bkm%7D%7Bh%7D%5D%2A1000%5B%5Cfrac%7Bm%7D%7B1km%7D%5D%2A1%5B%5Cfrac%7Bh%7D%7B3600s%7D%20%5D%3D%2025%20%5Bm%2Fs%5D)
Answer:
1.41 m/s^2
Explanation:
First of all, let's convert the two speeds from km/h to m/s:


Now we find the centripetal acceleration which is given by

where
v = 12.8 m/s is the speed
r = 140 m is the radius of the curve
Substituting values, we find

we also have a tangential acceleration, which is given by

where
t = 17.0 s
Substituting values,

The two components of the acceleration are perpendicular to each other, so we can find the resultant acceleration by using Pythagorean theorem:

Answer:
it would be c i just had it
Explanation:
welcome................