Answer:
Explanation:
We shall represent displacement in vector form .Consider east as x axes and north as Y axes west as - ve x axes and south as - ve Y axes . 255 km can be represented by the following vector
D₁ = - 255 cos 49 i + 255 sin49 j
= - 167.29 i + 192.45 j
Let D₂ be the further displacement which lands him 125 km east . So the resultant displacement is
D = 125 i
So
D₁ + D₂ = D
- 167.29 i + 192.45 j + D₂ = 125 i
D₂ = 125 i + 167.29 i - 192.45 j
= 292.29 i - 192.45 j
Angle of D₂ with x axes θ
tan θ = -192.45 / 292.29
= - 0.658
θ = 33.33 south of east
Magnitude of D₂
D₂² = ( 192.45)² + ( 292.29)²
D₂ = 350 km approx
Tan
Half of the moon is illuminated.
The computation would be:moles = mass/ Molar Mass, but we are looking for the mass, so rearranging, will give us: mass = moles x MM
Q = moles x Hf
Q = (mass/MM) x Hf
mass = (Q x MM) / Hf
= (1.50-kJ x 18.0-g/mol) / 6.01-kJ/mol
=4.49 g H20 is the answer