1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mademuasel [1]
3 years ago
9

Hi! I have a word bank I need help with please! I have the questions as an attachment

Physics
1 answer:
Katena32 [7]3 years ago
4 0
Scott needs to determine the density of a metallic rod. First, he should determine the mass of his sample on the laboratory balance. Second, he should measure the volume of his sample by water displacement. Finally, he can calculate the density by dividing mass/volume. 
Hope this helped ;)
You might be interested in
A boy finds an abandoned mine shaft in the woods, and wants to know how deep the hole is. He drops in a stone, and counts 4 seco
oee [108]
S=(0x4)+(0.5x4.81x4x4)
S=0.78.48

The depth is approximately 78 meters.
(My brain hurts now) :P Good Luck!
4 0
3 years ago
What is the meaning of critical angle in physics​
bonufazy [111]

Answer:

It's an Angle of incidence that provides a 90° angle but is also refracted at the same time. it's used to find the water-air boundary (which is 48.6 degrees). in addition, its an angle of incidence value.

6 0
3 years ago
X-rays with an energy of 300 keV undergo Compton scattering from a target. If the scattered rays are detected at 30 relative to
lys-0071 [83]

Answer:

a) \Delta \lambda = \lambda' -\lambda_o = \frac{h}{m_e c} (1-cos \theta)

For this case we know the following values:

h = 6.63 x10^{-34} Js

m_e = 9.109 x10^{-31} kg

c = 3x10^8 m/s

\theta = 37

So then if we replace we got:

\Delta \lambda = \frac{6.63x10^{-34} Js}{9.109 x10^{-31} kg *3x10^8 m/s} (1-cos 37) = 4.885x10^{-13} m * \frac{1m}{1x10^{-15} m}= 488.54 fm

b) \lambda_0 = \frac{hc}{E_0}

With E_0 = 300 k eV= 300000 eV

And replacing we have:

\lambda_0 = \frac{1240 x10^{-9} eV m}{300000eV}=4.13 x10^{-12}m = 4.12 pm

And then the scattered wavelength is given by:

\lambda ' = \lambda_0 + \Delta \lambda = 4.13 + 0.489 pm = 4.619 pm

And the energy of the scattered photon is given by:

E' = \frac{hc}{\lambda'}= \frac{1240x10^{-9} eVm}{4.619x10^{-12} m}=268456.37 eV - 268.46 keV

c) E_f = E_0 -E' = 300 -268.456 kev = 31.544 keV

Explanation

Part a

For this case we can use the Compton shift equation given by:

\Delta \lambda = \lambda' -\lambda_0 = \frac{h}{m_e c} (1-cos \theta)

For this case we know the following values:

h = 6.63 x10^{-34} Js

m_e = 9.109 x10^{-31} kg

c = 3x10^8 m/s

\theta = 37

So then if we replace we got:

\Delta \lambda = \frac{6.63x10^{-34} Js}{9.109 x10^{-31} kg *3x10^8 m/s} (1-cos 37) = 4.885x10^{-13} m * \frac{1m}{1x10^{-15} m}= 488.54 fm

Part b

For this cas we can calculate the wavelength of the phton with this formula:

\lambda_0 = \frac{hc}{E_0}

With E_0 = 300 k eV= 300000 eV

And replacing we have:

\lambda_0 = \frac{1240 x10^{-9} eV m}{300000eV}=4.13 x10^{-12}m = 4.12 pm

And then the scattered wavelength is given by:

\lambda ' = \lambda_0 + \Delta \lambda = 4.13 + 0.489 pm = 4.619 pm

And the energy of the scattered photon is given by:

E' = \frac{hc}{\lambda'}= \frac{1240x10^{-9} eVm}{4.619x10^{-12} m}=268456.37 eV - 268.46 keV

Part c

For this case we know that all the neergy lost by the photon neds to go into the recoiling electron so then we have this:

E_f = E_0 -E' = 300 -268.456 kev = 31.544 keV

3 0
3 years ago
Read 2 more answers
Một dây nhôm dài 10 m khi ở 25 độ C. Biết khi nhiệt độ tăng thêm 1 độ C thì chiều dài 1m dây nhôm sẽ tăng thêm 0,024mm.
kondor19780726 [428]

Answer:

??????? what language is this. um A then

5 0
3 years ago
__________________________ are made of rock or metal, which often collide with Earth
konstantin123 [22]

Answer:

Planets are bodies of rock or gas that are named after ancient gods.

Asteroids and Meteoroids are made of rock or metal, which often collide with Earth.

The terrestrial planets are more like the Earth.

The Juno spacecraft is exploring the planet Jupiter.

Explanation:

The planets and other stars in our solar system were similarly baptized. The planets were named after ancient gods. Other stars were baptized with names chosen by scientists or according to their peculiarity. Most of the planets were baptized by ancient Chinese astronomers, and later, by Babylonians. But over time different civilizations changed the names of the planets.

An asteroid is a smaller body in the solar system, usually on the order of just a few hundred kilometers. Meteoroids, in turn, are fragments of rocks that form from comets and asteroids. The luminous effect is produced when fragments of celestial bodies ignite in contact with the Earth's atmosphere due to friction. Both asteroids and meteoroids are made of rock or metal, which often collide with Earth.

The terrestrial planets are the most similar to the earth. These planets are those formed mainly by rocks and metals, have a solid surface without the incidence of rings, as is the case with Mercury, Venus and Mars.

The Juno spacecraft is exploring the planet Jupiter. This probe has already given us several unprecedented discoveries about the largest gas giant in the Solar System, in addition to sending us sensational images showing the complex and beautiful atmosphere of the planet.

6 0
3 years ago
Read 2 more answers
Other questions:
  • 2. What current flows through a hair dryer plugged into a 110 Volt circuit et it as a te
    12·1 answer
  • All animals need oxygen. We get oxygen from the air we breathe. How do fish get theirs?
    14·2 answers
  • In the virtual lab, calculations were made of the predicted diffraction angle, using the formula
    8·1 answer
  • How do lines of latitude affect how direct or indirect the Sun’s rays are on the Earth?
    8·1 answer
  • A frequently quoted rule of thumb in aircraft design is that wings should produce about 1000 n of lift per square meter of wing.
    8·1 answer
  • What do you think is the charge of the nucleus of an atom
    5·1 answer
  • Earth’s gravity keeps the moon in orbit by pulling on it.
    14·2 answers
  • A fireworks rocket is fired vertically upward. At its maximum height of 90.0 m , it explodes and breaks into two pieces, one wit
    6·1 answer
  • a 4,000 kilogram rocket has accelerates at a rate of 35 m/s2. How much force is required to do this?​
    11·1 answer
  • One exciting fairground ride acts like a gaint catapuit. The capsule which the 'rider' is strapped in is fired high into the sky
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!