Answer:
3.6*10^18s
Explanation:
To find the period of the satellite
We need to apply kephler's third law
Which is
MP² = (4π²/G) d³
d=semi-major axis which is the distance from center of moon = 98km+1740km = 1838km
where M= mass of the moon = 7.3x10^22kg
P=period
G=newtonian gravatational constant= 6.67x10^-11
To find the Period solve for P
P = √[(4π²/G M)xd³]
P=√(4 π²/6.67x10^-22*7.3x10^22kg) x (1.838x10^6m)³]
= 3.6*10^18s
Answer:
b
c
e
h
Explanation:
Note that the swing direction was not giving in the question and direction could be sideways (in a turn) or in a track or both
The question show something in common ...acceleration
So let's look at the statements and pick the correct ones
a is false while b is correct as the train is accelerating
c is correct. The train is accelerating even thou the speed could not be ascertained
d is false and not feasible as the train is accelerating
e is true as the train maybe moving at a constant speed in a circle
f is false. This could be constant velocity in a circle. Same as g (false)
h is true. It's accelerating
Answer:
Object A
Explanation:
The object that would make you feel worse if you're hit by it is the object possessing the highest momentum. Thus, we need to find the momentum of the two objects.
Momentum of an object is the product of its mass and that of it's velocity. Momentum is given by the formula
P = M * V, where
P = momentum
M = mass of the object
V = velocity of the object
Now, solving for object A, we have
P(a) = 1.1 * 10.2
P(a) = 11.22 kgm/s
And then, solving for object B, we have
P(b) = 2 * 5
P(b) = 10 kgm/s
The object when the highest momentum is object A, and thus would make you feel worse when hit by it
L = illuminance
A = surface
i = intensity
L = i / A ==: i = L * A
i = 6 lux * 4 m^2 = 24 lumen