1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Verizon [17]
3 years ago
8

According to a certain estimate, the depth N(t), in centimeters, of the water in a certain tank at t hours past 2:00 in the morn

ing is given by N(t)= -20(t - 5)^2 + 500 for 0 ≤ t ≤ 10. According to this estimate, at what time in the morning does the depth of the water in the tank reach its maximum?a) 5:30 b) 7:00 c) 7:30 d) 8:00 e) 9:00
Physics
1 answer:
never [62]3 years ago
6 0

Answer:

b) 7.00

Explanation:

N( t ) = -20( t - 5 )²

dN/ dt = -20 x 2 ( t - 5 )

For maximum N ( depth )

dN/dt = 0

- 40 ( t - 5 ) = 0

t = 5

So at 2 + 5 = 7 .00 am depth of water reaches its maximum.

You might be interested in
Consider a uniformly charged sphere of radius Rand total charge Q. The electric field Eout outsidethe sphere (r≥R) is simply tha
AlexFokin [52]

1) Electric potential inside the sphere: \frac{Q}{8\pi \epsilon_0 R}(3-\frac{r^2}{R^2})

2) Ratio Vcenter/Vsurface: 3/2

3) Find graph in attachment

Explanation:

1)

The electric field inside the sphere is given by

E=\frac{1}{4\pi \epsilon_0}\frac{Qr}{R^3}

where

\epsilon_0=8.85\cdot 10^{-12}F/m is the vacuum permittivity

Q is the charge on the sphere

R is the radius of the sphere

r is the distance from the centre at which we compute the field

For a radial field,

E(r)=-\frac{dV(r)}{dr}

Therefore, we can find the potential at distance r by integrating the expression for the electric field. Calculating the difference between the potential at r and the potential at R,

V(R)-V(r)=-\int\limits^R_r  E(r)dr=-\frac{Q}{4\pi \epsilon_0 R^3}\int r dr = \frac{-Q}{8\pi \epsilon_0 R^3}(R^2-r^2)

The potential at the surface, V(R), is that of a point charge, so

V(R)=\frac{Q}{4\pi \epsilon_0 R}

Therefore we can find the potential inside the sphere, V(r):

V(r)=V(R)+\Delta V=\frac{Q}{4\pi \epsilon_0 R}+\frac{-Q}{8\pi \epsilon_0 R^3}(R^2-r^2)=\frac{Q}{8\pi \epsilon_0 R}(3-\frac{r^2}{R^2})

2)

At the center,

r = 0

Therefore the potential at the center of the sphere is:

V(r)=\frac{Q}{8\pi \epsilon_0 R}(3-\frac{r^2}{R^2})\\V(0)=\frac{3Q}{8\pi \epsilon_0 R}

On the other hand, the potential at the surface is

V(R)=\frac{Q}{4\pi \epsilon_0 R}

Therefore, the ratio V(center)/V(surface) is:

\frac{V(0)}{V(R)}=\frac{\frac{3Q}{8\pi \epsilon_0 R}}{\frac{Q}{4\pi \epsilon_0 R}}=\frac{3}{2}

3)

The graph of V versus r can be found in attachment.

We observe the following:

- At r = 0, the value of the potential is \frac{3}{2}V(R), as found in part b) (where V(R)=\frac{Q}{4\pi \epsilon_0 R})

- Between r and R, the potential decreases as -\frac{r^2}{R^2}

- Then at r = R, the potential is V(R)

- Between r = R and r = 3R, the potential decreases as \frac{1}{R}, therefore when the distance is tripled (r=3R), the potential as decreased to 1/3 (\frac{1}{3}V(R))

Learn more about electric fields and potential:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

7 0
3 years ago
An electron that has an instantaneous velocity of ???? = 2.0 × 106 m ???? ???? + 3.0 × 106 m ???? ???? is moving through the uni
Setler79 [48]

Explanation:

It is given that,

Velocity of the electron, v=(2\times 10^6i+3\times 10^6j)\ m/s

Magnetic field, B=(0.030i-0.15j)\ T

Charge of electron, q_e=-1.6\times 10^{-19}\ C

(a) Let F_e is the force on the electron due to the magnetic field. The magnetic force acting on it is given by :

F_e=q_e(v\times B)

F_e=1.6\times 10^{-19}\times [(2\times 10^6i+3\times 10^6j)\times (0.030i-0.15j)]

F_e=-1.6\times 10^{-19}\times (-390000)(k)

F_e=6.24\times 10^{-14}k\ N

(b) The charge of electron, q_p=1.6\times 10^{-19}\ C

The force acting on the proton is same as force on electron but in opposite direction i.e (-k). Hence, this is the required solution.

8 0
3 years ago
When u write on a piece of glass sheet with a piece of chalk , the writing is not clear explain .
svetlana [45]
Becuse your weighting with chalk that has pigment
6 0
4 years ago
What is the acceleration of a 349 kg object that moved with a force of 750 N?
zavuch27 [327]

Answer:

<h3>The answer is 2.15 m/s²</h3>

Explanation:

The acceleration of an object given it's mass and the force acting on it can be found by using the formula

a =  \frac{f}{m}  \\

where

f is the force

m is the mass

From the question we have

a =  \frac{750}{349}  \\  = 2.14899713...

We have the final answer as

<h3>2.15 m/s²</h3>

Hope this helps you

4 0
3 years ago
The joule (J) is a unit of energy. Recall that energy may be converted between many different forms such as mechanical energy, t
REY [17]

Complete Question

The complete question is shown on the first uploaded image

Answer:

The workdone is  W = -177.275J

Explanation:

From the question we are told that

      The initial Volume is  Vi = 0.160 L

      The final volume is  V_f = 0.510L

      The external pressure is  P = 5.00 \ atm

Generally the change in volume is

           \Delta V = V_f - V_i

Substituting values we have

           \Delta V = 0.510 -0.160

                 = 0.350L

Generally workdone is mathematically represented as

           W = -P \Delta V

W is negative because the working is done on the environment by the system which is indicated by volume increase

     Substituting values

                W = - 5* 0.350

                    = -1.75 \ L \ \cdot atm

Now  1 \  L \cdot atm = 101.3J

  Therefore  W = -1.75* 101.3

                          = -177.275J

   

7 0
3 years ago
Read 2 more answers
Other questions:
  • Observations of galaxies and clusters of galaxies indicate that about ____ percent of the matter in the universe is dark matter.
    10·1 answer
  • A printed circuit board (PCB) is supported by a chassis that is attached to a vibrating motor. The board is 1.6 mm thick, 200 mm
    9·1 answer
  • An icy object moving through space in a highly eccentric orbit is called a
    12·1 answer
  • A____ is a type of inclined plane that's mechanical advantage is length divided by thickness. Please answer the blank.
    11·1 answer
  • You stand 1.40 m in front of a wall and gaze downward at a small vertical mirror mounted on it. In this mirror you can see the r
    15·1 answer
  • (HELP QUICK!!) Air pressure is a result of _____
    6·2 answers
  • HELPE PLEASE AND ILL HELP YOU!!! :/ IM BEGGING YOU!!! ​
    9·2 answers
  • A 1000-kg car rolling on a smooth horizontal surface ( no friction) has speed of 20 m/s when it strikes a horizontal spring and
    6·1 answer
  • A merry-go-round accelerating uniformly from rest achieves itsoperating speed of 2.5rpm in five revolution.
    12·1 answer
  • What is the force needed to accelerate a wagon with a mass of 10 kg at a rate
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!