Answer:
the final angular velocity of the platform with its load is 1.0356 rad/s
Explanation:
Given that;
mass of circular platform m = 97.1 kg
Initial angular velocity of platform ω₀ = 1.63 rad/s
mass of banana
= 8.97 kg
at distance r = 4/5 { radius of platform }
mass of monkey
= 22.1 kg
at edge = R
R = 1.73 m
now since there is No external Torque
Angular momentum will be conserved, so;
mR²/2 × ω₀ = [ mR²/2 +
(
R)² +
R² ]w
m/2 × ω₀ = [ m/2 +
(
)² +
]w
we substitute
w = 97.1/2 × 1.63 / ( 97.1/2 + 8.97(16/25) + 22.1
w = 48.55 × [ 1.63 / ( 48.55 + 5.7408 + 22.1 )
w = 48.55 × [ 1.63 / ( 76.3908 ) ]
w = 48.55 × 0.02133
w = 1.0356 rad/s
Therefore; the final angular velocity of the platform with its load is 1.0356 rad/s
Answer:
Explanation:
Initial angular velocity ω₀ = 151 x 2π / 60
= 15.8 rad /s
final velocity = 0
Angular deceleration α = 2.23 rad / s
ω² = ω₀² - 2 α θ
0 = 15.8² - 2 x 2.23 θ
= 55.99 rad
one revolution = 2π radian
55.99 radian = 55.99 / 2 π no of terns
= 9 approx .
Answer: 55 ohms
Explanation:
Given that,
Voltage of heater (v) = 110-volt
Current drawn by heater (I) = 2.0 amperes
resistance of the heater (r) = ?
Since voltage, current and resistance are involved, apply the formula for ohms law.
Voltage = current x resistance
i.e v = ir
where r = v / i
r = 110 volts / 2.0 A
r = 55 ohms
Thus, the resistance of the heater is 55 ohms