The force acting on the object is constant, so the acceleration of the object is also constant. By definition of average acceleration, this acceleration was
<em>a</em> = ∆<em>v</em> / ∆<em>t</em> = (6 m/s - 0) / (1.7 s) ≈ 3.52941 m/s²
By Newton's second law, the magnitude of the force <em>F</em> is proportional to the acceleration <em>a</em> according to
<em>F</em> = <em>m a</em>
where <em>m</em> is the object's mass. Solving for <em>m</em> gives
<em>m</em> = <em>F</em> / <em>a</em> = (10 N) / (3.52941 m/s²) ≈ 2.8 kg
Explanation:
Using Kinematics,
we have a = (v - u) / t.
Therefore a = (36m/s - 22m/s) / 5s = 2.8m/s².
Answer:
5. -24 m/s²
Explanation:
Acceleration: This can be defined as the rate of change of velocity.
The S.I unit of acceleration is m/s².
mathematically,
a = dv/dt ............................ Equation 1
Where a = acceleration, dv/dt = is the differentiation of velocity with respect to time.
But
v = dx(t)/dt
Where,
x(t) = 27t-4.0t³...................... Equation 2
Therefore, differentiating equation 2 with respect to time.
v = dx(t)/dt = 27-12t²............. Equation 3.
Also differentiating equation 3 with respect to time,
a = dv/dt = -24t
a = -24t .................... Equation 4
from the question,
At the end of 1.0 s,
a = -24(1)
a = -24 m/s².
Thus the acceleration = -24 m/s²
The right option is 5. -24 m/s²
Among the STEM discoverers, the one who is known for the invention of the circular saws that are used in sawmills is Babbitt or better known as Sarah "Tabitha<span>" Babbitt, an American inventor and Shaker tool maker. The answer to this is the first option. Hope this helps.</span>