Answer:The speed if hailstone dependly largely on its size. A hailstone with a diameter of 0.39 inches,falls wit a speed of 20mph while a hailstone with 3.1 inches in diameter falls at a speed of 110mph.
No speed does not depend on the distance that the hailstone falls.
Explanation: There are other factors that affect the speed of the falling hailstone apart from its size.They are:
1. Friction between the air and the hailstone
2. Wind condition( windy or moist air)
3. The rate at which it melts falling.
Answer:
1.52 nm
Explanation:
Using the De Broglie wavelength equation,
λ = h/p where λ = wavelength associated with electron, h = Planck's constant = 6.63 × 10⁻³⁴ Js and p = momentum of electron = mv where m = mass of electron = 9.1 × 10⁻³¹ kg and v = velocity of electron = 4.8 × 10⁵ m/s
So, λ = h/p
λ = h/mv
substituting the values of the variables into the equation, we have
λ = h/mv
λ = 6.63 × 10⁻³⁴ Js/(9.1 × 10⁻³¹ kg × 4.8 × 10⁵ m/s)
λ = 6.63 × 10⁻³⁴ Js/(43.68 × 10⁻²⁶ kgm/s)
λ = 0.1518 × 10⁻⁸ m
λ = 1.518 × 10⁻⁹ m
λ = 1.518 nm
λ ≅ 1.52 nm
Answer:
R = 28.125 ohms
Explanation:
Given that,
The voltage of a bulb, V = 4.5 V
Current, I = 0.16 A
We need to find the resistance of the filament. Using Ohm's law,
V = IR
Where
R is the resistance of the filament
So,

So, the resistance of the filament is equal to 28.125 ohms.