Answer:
Transverse
Explanation:
Electromagnetic waves don't depend on the medium they travel through like a mechanical wave does, so they aren't mechanical. They don't oscillate (move back in forth) in the direction they travel either, ruling out compressional and longitudinal waves.
That leaves tranverse waves, the ones we're most used to, since they look very "wavelike," with smooth peaks and valleys. Electromagnic waves behave like these, oscillating in a plane perpendicular to the direction they're traveling in.
When light travels from a medium with higher refractive index to a medium with lower refractive index, there is a critical angle after which all the light is reflected (so, there is no refraction).
The value of this critical angle can be derived by Snell's law, and it is equal to

where n2 is the refractive index of the second medium and n1 is the refractive index of the first medium.
In our problem, n1=1.47 and n2=1.33, so the critical angle is
Answer:
E=hf
Were, h = Planck constant 6.67*10^11
E=3.8*10^24 * 6.67*10^11= 2.508*q0^36j