5 moles.
think about the ratio of moles of iron oxide (Fe2O3) and iron (Fe) in that balanced chemical equation, which is 1:2, respectively. if there are 10 moles of Fe, you would divide that by 2 to get the number of moles of Fe2O3.
The 2nd one is the right answer
Hope this helped
Answer:
Option B
Explanation:
As Brønsted-Lowry theory states, acids are the ones that can donate protons.
When a proton is donated, it is released to become medium more acidic.
HCl is a strong acid.
HCl (l) + H₂O (l) → H₃O⁺ (aq) + Cl⁻(aq)
These always reffers to strong acid where the dissociation is 100% completed.
In a weak acid, dissociation is not 100% complete, that's why we have an equilibrium.
HA (l) + H₂O (l) ⇄ H₃O⁺ (aq) + A⁻(aq) Ka
Answer:
10.945 x 10^-4
Explanation:
Balanced equation:
Mn(OH)2 + 2 HCl --> MnCl2 + H2O
it takes 2 moles HCL for each mole Mn(OH)2
Next find the molarity of the Mn(OH)2 solution
= (1 mole Mn(OH)2 / 2 mole HCl) X (0.0020 mole HCl / 1000ml) X (4.86 ml)
= 4.86 x 10^-3 mole
this is now dissolved in (70 + 4.86) = 74.86 ml or 0.07486 L
thus [Mn(OH)2] = 4.86 x 10^-3 mole / 0.07486 L = 0.064921 M
Ksp = [Mn2+][OH-]^2 = 4x^3 = 4(0.064921)^3 = 10.945 x 10^-4