1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ahrayia [7]
3 years ago
11

A student redid the experiment of mixing room temperature water and warm

Physics
2 answers:
Ulleksa [173]3 years ago
8 0

Answer:

The answer is B

Explanation:

Len [333]3 years ago
7 0

Answer:

I think B or C it won't lower so I'll go with B bc warm water is hotter than regular temp water

You might be interested in
The actual depth of a shallow pool 1.00 m deep is not the same as the apparent depth seen when you look straight down at the poo
DedPeter [7]

Answer:

d' = 75.1 cm

Explanation:

It is given that,

The actual depth of a shallow pool is, d = 1 m

We need to find the apparent depth of the water in the pool. Let it is equal to d'.

We know that the refractive index is also defined as the ratio of real depth to the apparent depth. Let the refractive index of water is 1.33. So,

n=\dfrac{d}{d'}\\\\d'=\dfrac{d}{n}\\\\d'=\dfrac{1\ m}{1.33}\\\\d'=0.751\ m

or

d' = 75.1 cm

So, the apparent depth is 75.1 cm.

4 0
3 years ago
What is the definition of energy ​
natita [175]

Energy (in Physics) is the ability to do work.

5 0
3 years ago
Newton’s empirical law of cooling/warming of an object is given by ( ), T Tm k dt dT = − where k is a constant of proportionalit
pychu [463]

Answer:

The time for the cake to cool off to room temperature is

approximately 30 minutes.

Let T_{0} = 70^{0}F be the temperature and T that of the body

Explanation:

 Our Tm = 70, the initial-value problem is

\frac{DT}{dt} = <em>k</em>(T − 70), T(0) = 300

Solving the equation, we get

\frac{DT}{t-70} = <em>kdt</em>

In [T-70]= <em>kt </em>+C_{1}

    T   =  70  + C_{2} e^{kt}

Finding he value for C_{2} using the initial value of T (0)= 300, therefore we get:

300=70+C_{2}

C_{2} = 230 therefore

T= 70+ 230 e^{kt}

Finding the value for <em>k </em>using T (3)  = 200, therefore we get

T (3) = 200

e^{3k} = \frac{13}{23}

<em>K </em>= \frac{1}{3} in \frac{13}{23}

= -0.19018

Therefore

T(t) = 70+230e^{-0.19018}

4 0
3 years ago
Explain why it is easier to climb a mountain on a zigzag path rather than one straight up the side.
GaryK [48]
Although a zig zag pattern going up a mountain means you walk further, the incline of the slope is a lot less so you don't have to work as hard.
8 0
3 years ago
Define Newton’s three laws of motion and how they apply to everyday situations.
son4ous [18]
<span>1. By Ilkka Cheema<span><span>2. </span>Newton’s 1st Law  The first law of motion sates that an object will not change its speed or direction unless an unbalanced force (a force which is distant from the reference point) affects it. Another name for the first law of motion is the law of inertia. If balanced forces act on an object it doesn’t accelerate or change direction. This means it doesn’t change its velocity and it doesn’t have momentum.</span><span><span>3. </span>Examples of Newton’s 1st Law  If you slide a hockey puck on ice, eventually it will stop, because of friction on the ice. It will also stop if it hits something, like a player’s stick or a goalpost.  If you kicked a ball in space, it would keep going forever, because there is no gravity, friction or air resistance going against it. It will only stop going in one direction if it hits something like a meteorite or reaches the gravity field of another planet.  If you are driving in your car at a very high speed and hit something, like a brick wall or a tree, the car will come to an instant stop, but you will keep moving forward. This is why cars have airbags, to protect you from smashing into the windscreen.</span><span><span>4. </span>Newton’s 2nd Law  The second law of motion states that acceleration is produced when an unbalanced force acts on an object (mass). The more mass the object has the more net force has to be used to move it.</span><span><span>5. </span>Examples of Newton’s 2nd Law  If you use the same force to push a truck and push a car, the car will have more acceleration than the truck, because the car has less mass.  It is easier to push an empty shopping cart than a full one, because the full shopping cart has more mass than the empty one. This means that more force is required to push the full shopping cart.</span><span><span>6. </span>Newton’s 3rd Law The third law of motion sates that for every action there is a an equal and opposite reaction that acts with the same momentum and the opposite velocity.</span><span><span>7. </span>Examples of Newton’s 3rd Law  When you jump off a small rowing boat into water, you will push yourself forward towards the water. The same force you used to push forward will make the boat move backwards.  When air rushes out of a balloon, the opposite reaction is that the balloon flies up.  When you dive off of a diving board, you push down on the springboard. The board springs back and forces you into the air.</span></span>
3 0
3 years ago
Other questions:
  • A metal conduit will be used as a pathway for wiring through a concrete block. The conduit is a 4 foot long rod with an outer di
    13·2 answers
  • What is the correct defenition of velocity
    12·2 answers
  • Suppose you apply a force of 40 N to a 0.25​-meter-long wrench attached to a bolt in a direction perpendicular to the bolt. Dete
    5·1 answer
  • The plates of a parallel-plate capacitor each have an area of 0.1 m^2 and are separated by a 0.9 mm thick layer of porcelain. Th
    9·1 answer
  • (b) 360 days into seconds.
    11·1 answer
  • What is the maximum powr of a module in Watts to the nearest whole Watt?​
    5·1 answer
  • . A car going 50 m/s accelerates to pass a truck. Five seconds later the car is going 80m/s. Calculate the acceleration of the c
    12·1 answer
  • Which ray diagram demonstrates the phenomenon of absorption?
    8·2 answers
  • A car speeds up from 3 m/s to 10 m/s in 8 s. How far does the car travel while doing this? 2. A
    7·1 answer
  • A spacecraft travels at 1.5 X 108 m/s relative to Earth. A process onboard the
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!