Answer:
In ideal case, when no resistive forces are present then both the balls will reach the ground simultaneously. This is because acceleration due to gravity is independent of mass of the falling object. i.e. g = GM/R² where G = 6.67×10²³ Nm²/kg², M = mass of earth and R is radius of earth.
Let us assume that both are metallic balls. In such case, we have to take into account the magnetic field of earth (which will give rise to eddy currents, and these eddy currents will be more, if surface area will be more) and viscous drag of air ( viscous drag is proportional to radius of falling ball), then bigger ball will take slightly more time than the smaller ball.
Explanation:
In ideal case, when no resistive forces are present then both the balls will reach the ground simultaneously. This is because acceleration due to gravity is independent of mass of the falling object. i.e. g = GM/R² where G = 6.67×10²³ Nm²/kg², M = mass of earth and R is radius of earth.
Let us assume that both are metallic balls. In such case, we have to take into account the magnetic field of earth (which will give rise to eddy currents, and these eddy currents will be more, if surface area will be more) and viscous drag of air ( viscous drag is proportional to radius of falling ball), then bigger ball will take slightly more time than the smaller ball.
Answer:
Concave lenses are used in eyeglasses that correct myopia or nearsightedness.
Answer:
ccccccc. ccccccc ccc ccccccc c
<h2>
a) Initial velocity = 83 ft/s</h2><h2>
b) Object's maximum speed = 99.4 ft/s</h2><h2>
c) Object's maximum displacement = 153.64 ft</h2><h2>
d) Maximum displacement occur at t = 2.59 seconds.</h2><h2>e)
The displacement is zero when t = 5.70 seconds</h2><h2>
f) Object's maximum height = 153.64 ft</h2>
Explanation:
We have velocity
v(t)= -32t + 83
Integrating
s(t) = -16t²+83t+C
At t = 0 displacement is 46 feet
46 = -16 x 0²+83 x 0+C
C = 46 feet
So displacement is
s(t) = -16t²+83t+46
a) Initial velocity is
v(0)= -32 x 0 + 83 = 83 ft/s
Initial velocity = 83 ft/s
b) Maximum velocity is when the object reaches ground, that is s(t) = 0 ft
Substituting
0 = -16t²+83t+46
t = 5.70 seconds
Substituting in velocity equation
v(t)= -32 x 5.70 + 83 = -99.4 ft/s
Object's maximum speed = 99.4 ft/s
c) Maximum displacement is when the velocity is zero
That is
-32t + 83 = 0
t = 2.59 s
Substituting in displacement equation
s(2.59) = -16 x 2.59²+83 x 2.59+46 = 153.64 ft
Object's maximum displacement = 153.64 ft
d) Maximum displacement occur at t = 2.59 seconds.
e) Refer part b
The displacement is zero when t = 5.70 seconds
f) Same as option d
Object's maximum height = 153.64 ft