The answer to your question is kidneys


Explanation:
Snell's law (also known as Snell–Descartes law and the law of refraction) is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media, such as water, glass, or air.
On question 30, that is a displacement- time graph (DT). On this type of graph the gradient is equal to the velocity. B has the steepest gradient, then A and finally C
Now velocity is a vector quantity so it has a direction and speed ( speed doesn't have a fixed direction.)
on the DT graph im going to assume that movement B is a positive velocity with A and C being negative.
So by ranking these: A is the most negative, C is the least negative and B has to be the greatest as it is the only positive velocity.
Q31, The same type of graph is present, by looking at the gradients we can rank the largest and smallest velocities- speeds in the case of the question.
i'll skip my working out as its the same as before:
C, B, A and then D
the same idea as on Q30 applies to Q31 part b,
D,C,B then A
Answer:
a) 
b) 
Explanation:
Given:
- mass of copper,

- initial temperature of copper,

- specific heat capacity of copper,

- mass of water,

- initial temperature of water,

- specific heat capacity of water,

a)
<u>∵No heat is lost in the environment and the heat is transferred only between the two bodies:</u>
Heat rejected by the copper = heat absorbed by the water


b)
<u>Now the amount of heat transfer:</u>



∴Entropy change



"Free fall" is the motion of an object when gravity is the ONLY force
acting on it.
In true 'free fall' the speed of an object increases at a constant rate
for the total duration of the fall. The rate of increase, on or near the
Earth's surface, is 9.8 meters per second for each second of fall.
True free fall is almost impossible to observe in everyday life, because
whenever we see anything falling, it's almost always falling through air,
so gravity is NOT the only force acting on it. The friction due to the
motion through air works against the gravitational force. In many cases,
the result is that the object's speed eventually stops increasing and
becomes constant, at a speed often described with the faux technical,
high-fallutin' sounding phrase "terminal velocity". It must be understood
that 'terminal velocity' is NOT a property of gravity or of free fall, but is
only a result of falling through some surrounding stuff that interferes with
the process of true 'free fall'.