Answer:
Explanation:
<u>Friction Force</u>
When objects are in contact with other objects or rough surfaces, the friction forces appear when we try to move them with respect to each other. The friction forces always have a direction opposite to the intended motion, i.e. if the object is pushed to the right, the friction force is exerted to the left.
There are two blocks, one of 400 kg on a horizontal surface and other of 100 kg on top of it tied to a vertical wall by a string. If we try to push the first block, it will not move freely, because two friction forces appear: one exerted by the surface and the other exerted by the contact between both blocks. Let's call them Fr1 and Fr2 respectively. The block 2 is attached to the wall by a string, so it won't simply move with the block 1.
Please find the free body diagrams in the figure provided below.
The equilibrium condition for the mass 1 is
The mass m1 is being pushed by the force Fa so that slipping with the mass m2 barely occurs, thus the system is not moving, and a=0. Solving for Fa
The mass 2 is tried to be pushed to the right by the friction force Fr2 between them, but the string keeps it fixed in position with the tension T. The equation in the horizontal axis is
The friction forces are computed by
Recall N1 is the reaction of the surface on mass m1 which holds a total mass of m1+m2.
Replacing in [1]
Simplifying
Plugging in the values
<span>The law of conservation of energy applies to a light bulb because the energy is being transformed into light and the light bulb is acting as a catalyst. The light bulb itself is not a form of energy, however when in combination with the electrical outlet to the bulb the electricity heats up the metal interior forming it into light. according to the law of conservation energy cannot be created or destroyed, but instead is formed into different kinds of energy. In relation to a light bulb electrical currents are forming heat energy by heating up the metal interior, then the bulb or glass around it allows to radiate light.</span>
Wind speed and air temperature are used to calculate a windchill factor.
<u>Explanation:</u>
<u></u>
Wind-chill factor is the reduction of body temperature due to the passing flow of lower-temperature air.
The air temperature value is always higher than the wind chill numbers. the heat index will be used if the apparent temperature is higher than the air temperature.So, Wind speed and air temperature are mainly used to calculate a windchill factor.
There are many ways, the surface loses its heat through conduction, evaporation,radiation, and convection.The rate of convection depends on the difference in temperature between the surface and the fluid surrounding the surface and the velocity of that fluid with respect to the surface. The air around the warm surface will be heated, an insulating layer of warm air forms against the surface.The layer becomes a boundary between two. As the wind speed is high the surface cools down rapidly.
Take into account that in a standing wave, the frequency f of the points executing simple harmonic motion, is simply a multiple of the fundamental harmonic fo, that is:
f = n·fo
where n is an integer and fo is the first harmonic or fundamental.
fo is given by the length L of a string, in the following way:
fo = v/λ = v/(L/2) = 2v/L
becasue in the fundamental harmonic, the length of th string coincides with one hal of the wavelength of the wave.