Given
v = 343 m/s
ac = 5g
ac = 5*9.8 m/s^2
ac = 49 m/s^2
where,
v: velocity
ac = centripetal aceleration
Procedure
We call the acceleration of an object moving in uniform circular motion—resulting from a net external force—the centripetal acceleration ac; centripetal means “toward the center” or “center seeking”.
Formula

The minimum radius not to exceed the centripetal acceleration is 2401 m.
Answer:
70509.8039216 N/C
Explanation:
k = Coulomb constant = 
q = Charge = 2.00 µC
l = Length of filament = 5.1 m
r = Radius of cylinder = 10 cm

Electric field is given by

The electric field at the surface of the cylinder is 70509.8039216 N/C
In the beginning, the melting stage they call it.