Answer:
Total pressure= 120945[Pa]
Force exerted = 29026800 [N] or 29.02*10^6 [N]
Explanation:
We know that the total pressure is the result of the sum of the atmospheric pressure plus the manometric pressure. The equation is:

In this problem we know the atmospheric pressure 101.325x10^3 [Pa], therefore we need to find the manometric pressure.
The manometric pressure in the bottom of the swimming pool depends only on the water column of water generated (depth of the swimming pool)

where:
density = density of the water 1000 [kg/m^3]
g= gravity [m/s^2]
h= column of water (meters)
replacing the values:
![Pman= 1000 *9.81* 2 = 19620 [Pa]\\\\](https://tex.z-dn.net/?f=Pman%3D%201000%20%2A9.81%2A%202%20%3D%2019620%20%5BPa%5D%5C%5C%5C%5C)
The total pressure will be:
![Ptotal= 101325+19620 = 120945 [Pa]\\\\](https://tex.z-dn.net/?f=Ptotal%3D%20101325%2B19620%20%3D%20120945%20%5BPa%5D%5C%5C%5C%5C)
The force exerte on the bottom is defined by the following expression:

Answer:
(a): When the four resistors are connected in series the equivalent resistor value is Req= 48Ω
(b): when the four resistors are connected in parallel the equivalent resistor value is Req=3Ω
Explanation:
R=R1=R2=R3=R4= 12Ω
(a)
Req= R1+R2+R3+R4
Req= 48 Ω
(b)
Req= (1/12 * 4)⁻¹
Req= 3 Ω
Answer:
7.15 m/s
Explanation:
We use a frame of reference in which the origin is at the point where the trucck passed the car and that moment is t=0. The X axis of the frame of reference is in the direction the vehicles move.
The truck moves at constant speed, we can use the equation for position under constant speed:
Xt = X0 + v*t
The car is accelerating with constant acceleration, we can use this equation
Xc = X0 + V0*t + 1/2*a*t^2
We know that both vehicles will meet again at x = 578
Replacing this in the equation of the truck:
578 = 24 * t
We get the time when the car passes the truck
t = 578 / 24 = 24.08 s
Before replacing the values on the car equation, we rearrange it:
Xc = X0 + V0*t + 1/2*a*t^2
V0*t = Xc - 1/2*a*t^2
V0 = (Xc - 1/2*a*t^2)/t
Now we replace
V0 = (578 - 1/2*1.4*24.08^2) / 24.08 = 7.15 m/s
Answer:
The formula for calculating weight is F = m × 9.8 m/s2, where F is the object's weight in Newtons (N) and m is the object's mass in kilograms.
The <em>estimated</em> displacement of the center of mass of the olive is
.
<h3>Procedure - Estimation of the displacement of the center of mass of the olive</h3>
In this question we should apply the definition of center of mass and difference between the coordinates for <em>dynamic</em> (
) and <em>static</em> conditions (
) to estimate the displacement of the center of mass of the olive (
):
(1)
Where:
- x-Coordinate of the i-th element of the system, in meters.
- y-Coordinate of the i-th element of the system, in meters.
- x-Component of the net force applied on the i-th element, in newtons.
- y-Component of the net force applied on the i-th element, in newtons.
- Mass of the i-th element, in kilograms.
- Gravitational acceleration, in meters per square second.
If we know that
,
,
,
,
,
and
, then the displacement of the center of mass of the olive is:
<h3>Dynamic condition
![\vec{r} = \left[\frac{(0)\cdot (0.50)\cdot (9.807)+(0)\cdot (0) + (1)\cdot (1.50)\cdot (9.807) + (1)\cdot (-3)}{(0.50)\cdot (9.807) + 0 + (1.50)\cdot (9.807)+(-3)}, \frac{(0)\cdot (0.50)\cdot (9.807) + (0)\cdot (3) + (2)\cdot (1.50)\cdot (9.807) +(2) \cdot (-2)}{(0.50)\cdot (9.807) + (3)+(1.50)\cdot (9.807)+(-2)} \right]](https://tex.z-dn.net/?f=%5Cvec%7Br%7D%20%3D%20%5Cleft%5B%5Cfrac%7B%280%29%5Ccdot%20%280.50%29%5Ccdot%20%289.807%29%2B%280%29%5Ccdot%20%280%29%20%2B%20%281%29%5Ccdot%20%281.50%29%5Ccdot%20%289.807%29%20%2B%20%281%29%5Ccdot%20%28-3%29%7D%7B%280.50%29%5Ccdot%20%289.807%29%20%2B%200%20%2B%20%281.50%29%5Ccdot%20%289.807%29%2B%28-3%29%7D%2C%20%5Cfrac%7B%280%29%5Ccdot%20%280.50%29%5Ccdot%20%289.807%29%20%2B%20%280%29%5Ccdot%20%283%29%20%2B%20%282%29%5Ccdot%20%281.50%29%5Ccdot%20%289.807%29%20%2B%282%29%20%5Ccdot%20%28-2%29%7D%7B%280.50%29%5Ccdot%20%289.807%29%20%2B%20%283%29%2B%281.50%29%5Ccdot%20%289.807%29%2B%28-2%29%7D%20%20%5Cright%5D)
![\vec r = (0,704, 1.233)\,[m]](https://tex.z-dn.net/?f=%5Cvec%20r%20%3D%20%280%2C704%2C%201.233%29%5C%2C%5Bm%5D)
</h3>
<h3>Static condition</h3><h3>
![\vec{r}_{o} = \left[\frac{(0)\cdot (0.50)\cdot (9.807) + (1)\cdot (1.50)\cdot (9.807)}{(0.50)\cdot (9.807) + (1.50)\cdot (9.807)}, \frac{(0)\cdot (0.50)\cdot (9.807) + (2)\cdot (1.50)\cdot (9.807)}{(0.50)\cdot (9.807)+(1.50)\cdot (9.807)} \right]](https://tex.z-dn.net/?f=%5Cvec%7Br%7D_%7Bo%7D%20%3D%20%5Cleft%5B%5Cfrac%7B%280%29%5Ccdot%20%280.50%29%5Ccdot%20%289.807%29%20%2B%20%281%29%5Ccdot%20%281.50%29%5Ccdot%20%289.807%29%7D%7B%280.50%29%5Ccdot%20%289.807%29%20%2B%20%281.50%29%5Ccdot%20%289.807%29%7D%2C%20%5Cfrac%7B%280%29%5Ccdot%20%280.50%29%5Ccdot%20%289.807%29%20%2B%20%282%29%5Ccdot%20%281.50%29%5Ccdot%20%289.807%29%7D%7B%280.50%29%5Ccdot%20%289.807%29%2B%281.50%29%5Ccdot%20%289.807%29%7D%20%20%5Cright%5D)
</h3><h3>
![\vec r_{o} = \left(0.75, 1.50)\,[m]](https://tex.z-dn.net/?f=%5Cvec%20r_%7Bo%7D%20%3D%20%5Cleft%280.75%2C%201.50%29%5C%2C%5Bm%5D)
</h3><h3 /><h3>Displacement of the center of mass of the olive</h3>

![\overrightarrow{\Delta r} = (0.704-0.75, 1.233-1.50)\,[m]](https://tex.z-dn.net/?f=%5Coverrightarrow%7B%5CDelta%20r%7D%20%3D%20%280.704-0.75%2C%201.233-1.50%29%5C%2C%5Bm%5D)
![\overrightarrow{\Delta r} = (-0.046, -0.267)\,[m]](https://tex.z-dn.net/?f=%5Coverrightarrow%7B%5CDelta%20r%7D%20%3D%20%28-0.046%2C%20-0.267%29%5C%2C%5Bm%5D)
The <em>estimated</em> displacement of the center of mass of the olive is
. 
To learn more on center of mass, we kindly invite to check this verified question: brainly.com/question/8662931