Well, basically because the observations can help you out during the experiment.
The speed of the car at the top of the hill is 14m/s
<u>Explanation:</u>
given that
Initial velocity u of the car=0 m/s
The distance can be determined by finding out the difference between the elevation of the first slope and second slope.
elevation of the first slope=26 m
elevation of second slope=16m
distance s=26-16=10 m
acceleration due to gravity g=9.8 m/s2
speed of the car at the top of the hill can be determined by using the equation

speed of the car at the top of the hill is 14m/s
Answer:
58.33 Hz
175 Hz
291.67 Hz
Explanation:
L = Length of tube = 1.5 m
v = Speed of sound in air = 350 m/s
The first resonant frequency is given by

The first resonant frequency is 58.33 Hz
The second resonant frequency is given by

The first resonant frequency is 175 Hz
The third resonant frequency is given by

The first resonant frequency is 291.67 Hz
Answer:
All forces are either balanced or unbalanced and each force acts in different ways.
Answer:
Impedance = 19.44ohms
Current = 5.14A
Power factor = 0.62
Explanation:
Impedance in an RLC AC circuit is defined as the total opposition to the flow of current in the resistor, inductor and capacitor.
Impedance Z = √R²+(Xl-Xc)²
Where R is the resistance = 12Ω
Inductance L = 0.15H
Capacitance C = 100uF = 100×10^-6F
Since Xl = 2πfL and Xc = 1/2πfC where f is the frequency.
Xl = 2π×50×0.15
Xl = 15πΩ
Xl = 47.12Ω
Xc = 1/2π×50×100×10^-6
Xc = 100/π Ω
Xc = 31.83Ω
Z =√12²+(47.12-31.83)²
Z = √144+233.78
Z = 19.44Ω
Impedance = 19.44ohms
To calculate the circuit current, we will use the expression V=IZ where V is the supply voltage = 100V
I = V/Z = 100/19.44
I = 5.14Amperes
To calculate the power factor,
Power factor = cos(theta) where;
theta = arctan(Xl-Xc)/R
theta = arctan(47.12-31.83)/12
theta = arctan(15.29/12)
theta = arctan1.27
theta = 51.78°
Power factor = cos51.78°
Power factor = 0.62