For 7A(17) :
Electronic configuration 
So, there are 5 unpaired electrons present in group 7A(17).
<h3>
What are Unpaired Electrons?</h3>
- An unpaired electron is an electron that doesn't form part of an electron pair when it occupies an atom's orbital in chemistry.
- Each of an atom's three atomic orbitals, designated by the quantum numbers n, l, and m, has the capacity to hold a pair of two electrons with opposing spins.
- Unpaired electrons are extremely uncommon in chemistry because an object carrying an unpaired electron is typically quite reactive. This is because the production of electron pairs, whether in the form of a chemical bond or as a lone pair, is frequently energetically advantageous.
- They play a crucial role in describing reaction pathways even though they normally only appear momentarily during a reaction on a thing called a radical in organic chemistry.
To learn more about unpaired electrons with the given link
brainly.com/question/14356000
#SPJ4
Hey there ! :
<span>2 Na + 2 H2O = 2 NaOH + 1 H<span>2
</span></span>Sodium<span> + </span>Dihydrogen Monoxide<span> = </span><span>Natriumhydroxid</span><span> + </span>Hydrogen
Coefficients:
Reagents : Na = 2
H2O = 2
Products : NaOH = 2
H2 = 1
Answer:
The number of moles of xenon are 1.69 mol.
Explanation:
Given data:
Number of moles of xenon = ?
Volume of gas = 37.8 L
Temperature = 273 K
Pressure = 1 atm
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
Now we will put the values in formula.
1 atm × 37.8 L = n × 0.0821 atm.L/ mol.K ×273 K
37.8 atm.L = n × 22.413 atm.L/ mol.
n = 37.8 atm.L / 22.413 atm.L/ mol.
n = 1.69 mol
The number of moles of xenon are 1.69.
Bohr model is valid only for hydrogen and hydrogen-like species, but quantum mechanical model can explain all elements....
Answer:Increasing the temperature increases reaction rates because of the disproportionately large increase in the number of high energy collisions. It is only these collisions (possessing at least the activation energy for the reaction) which result in a reaction.
Explanation: