Answer:
(a) 91 kg (2 s.f.) (b) 22 m
Explanation:
Since it is stated that a constant horizontal force is applied to the block of ice, we know that the block of ice travels with a constant acceleration and but not with a constant velocity.
(a)

Subsequently,

*Note that the equations used above assume constant acceleration is being applied to the system. However, in the case of non-uniform motion, these equations will no longer be valid and in turn, calculus will be used to analyze such motions.
(b) To find the final velocity of the ice block at the end of the first 5 seconds,

According to Newton's First Law which states objects will remain at rest
or in uniform motion (moving at constant velocity) unless acted upon by
an external force. Hence, the block of ice by the end of the first 5
seconds, experiences no acceleration (a = 0) but travels with a constant
velocity of 4.4
.

Therefore, the ice block traveled 22 m in the next 5 seconds after the
worker stops pushing it.
Im 99% sure
tan^-1 (6.2/22)= 15.7º
with 2 significant figures 16º
According to Newton's second law
E.e = a * mp ..... (1)
where
E is the magnitude of the electric field; e = 1.6 * 10^-19 is the elementary charge; mp = 1.67*10^-27 kg is the proton mass; a is the acceleration.
So, the distance
l = at^2/2 .......(2)
The proton accelerated
a = 2l / t^2 ...........(3)
From equations (1) and (3)
E= 32.51 V/m
Electric field
The physical field that surrounds electrically charged particles and exerts a force on all other charged particles in the field, either attracting or repelling them, is known as an electric field (also known as an E-field). It can also refer to a system of charged particles' physical field. Electric charges and time-varying electric currents are the building blocks of electric fields. The electromagnetic field, one of the four fundamental interactions (also known as forces) of nature, manifests itself in both electric and magnetic fields.
To learn more about an electric field refer here:
brainly.com/question/15800304
#SPJ4
The muscular system brings strength and endurance to the body. It helps us perform everyday activities. As well as soaks up water to keep us hydrated longer.
Answer:
Branches of physics with real life examples
In measuring and understanding nuclear fission (a real life phenomenon), all branches of theoretical and experimental physics have to be employed. Physics branches needed in it are, radiation detection and measurement, nuclear physics, statistical physics, thermodynamics, and almost all others.
Explanation: