Because the tip of the moon's shadow ... the area of "totality" ... is never more than a couple hundred miles across, It never covers a single place for more than 7 minutes, and can never stay on the Earth's surface for more than a few hours altogether during one eclipse.
If you're not inside that small area, you don't see a total eclipse.
<span>0.0001 km / year or 10^-5 km/year just take 50 km and divide it by 5 million</span>
Hi there!
We can begin by deriving the equation for how long the ball takes to reach the bottom of the cliff.

There is NO initial vertical velocity, so:

Rearrange to solve for time:

Plug in the given height and acceleration due to gravity (g ≈ 9.8 m/s²)

Now, use the following for finding the HORIZONTAL distance using its horizontal velocity:

Answer:
Who published the first journal of experimental psychology?
American Psychological Association published the first journal of experimental psychology.
xXxAnimexXx
Happy labor day!
Answer:
Explanation:
The velocity of the vehicle would increase because the the tanks (when filled with water) must have exerted a force which would reduce the velocity of the vehicle at a certain pressure on the gas pedal. Note that force equals mass multiplied by acceleration; as the mass decreases, so the force decreases. Thus, when the mass exerted by this tanks (on the vehicle) decrease as a result of the hole punctured in them, the force exerted by the tanks would also decrease causing an increase in velocity of the pick up truck when the same pressure is applied on the gas pedal throughout (before and after the puncture).
The conservation law that applied here is the law of conservation of energy which states that energy can neither be created nor destroyed but can be transformed from one form to another. This is because the energy the vehicle used in carrying the load (the tanks) was transformed to the energy that resulted in increasing it's velocity (no new energy was formed as the pressure on the gas pedal remained the same).