Concept: The magnification of spherical mirror can be defined by two ways.
(i) In terms of the height of the object and image.
The magnification of the spherical mirror is defined as the ratio of the height of the image'
' to the height of the object '
'. It is denoted by letter 'm'.
Mathematically, it can be written as
![m= \frac{h_{i}}{h_{o}} ------------(1)](https://tex.z-dn.net/?f=%20m%3D%20%5Cfrac%7Bh_%7Bi%7D%7D%7Bh_%7Bo%7D%7D%20%20%20------------%281%29%20)
(ii) In terms of the object's and image's distances.
The magnification of the spherical mirror is defined as the negative ratio of the image distance'
' to the object distance '
'.
Mathematically, it can be written as
![m= - \frac{d_{i}}{d_{o}} ------------(2)](https://tex.z-dn.net/?f=%20m%3D%20-%20%5Cfrac%7Bd_%7Bi%7D%7D%7Bd_%7Bo%7D%7D%20%20%20------------%282%29%20)
Now, from equation (1) and (2) we have,
![m = \frac{h_{i}}{h_{o}} = - \frac{d_{i}}{d_{o}} -----------(3)](https://tex.z-dn.net/?f=%20m%20%3D%20%5Cfrac%7Bh_%7Bi%7D%7D%7Bh_%7Bo%7D%7D%20%20%20%3D%20-%20%20%5Cfrac%7Bd_%7Bi%7D%7D%7Bd_%7Bo%7D%7D%20%20-----------%283%29%20)
Given: Spherical Concave Mirror,
We will consider positive sign for object's and image's distance because both are in front of the mirror.
Object distance
.
Image distance ![(d_{i}) = + 16 mm](https://tex.z-dn.net/?f=%20%28d_%7Bi%7D%29%20%3D%20%2B%2016%20mm%20)
Object's height ![(h_{o}) = + 4 mm](https://tex.z-dn.net/?f=%20%28h_%7Bo%7D%29%20%3D%20%2B%204%20mm%20)
Image's height ![(h_{i}) =?](https://tex.z-dn.net/?f=%20%28h_%7Bi%7D%29%20%3D%3F%20)
Now, apply equation (3)
![\frac{h_{i}}{h_{o}} = - \frac{d_{i}}{d_{o}}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bh_%7Bi%7D%7D%7Bh_%7Bo%7D%7D%20%20%20%3D%20-%20%5Cfrac%7Bd_%7Bi%7D%7D%7Bd_%7Bo%7D%7D%20%20%20)
![Or, \frac{h_{i}}{4 mm} = - \frac{+16 mm}{+8 mm}](https://tex.z-dn.net/?f=%20Or%2C%20%20%20%5Cfrac%7Bh_%7Bi%7D%7D%7B4%20mm%7D%20%20%20%3D%20-%20%5Cfrac%7B%2B16%20mm%7D%7B%2B8%20mm%7D%20%20)
Or, hi = - 8 mm
Here; negative sign means, the image will be inverted.
The image's height will be 8 mm.