Answer:
The answer is 9.8 N
Explanation:
As we know that the weight of an object is the amount of gravitational force acting on the object in an upward direction if the weight is acting is the downward direction.
The formula of weight:
W = Mass x Gravitational force
W = m x g
Given data:
Mass =1 kg
g = 9.8 ms-2
W = 1kg x 9.8 ms-2 = 9.8 kgms-2 ( 1 kgms-2 = N)
SO,
W = 9.8 N
The toy has an earth weight of 9.8 N.
The kinetic energy of the small ball before the collision is
KE = (1/2) (mass) (speed)²
= (1/2) (2 kg) (1.5 m/s)
= (1 kg) (2.25 m²/s²)
= 2.25 joules.
Now is a good time to review the Law of Conservation of Energy:
Energy is never created or destroyed.
If it seems that some energy disappeared,
it actually had to go somewhere.
And if it seems like some energy magically appeared,
it actually had to come from somewhere.
The small ball has 2.25 joules of kinetic energy before the collision.
If the small ball doesn't have a jet engine on it or a hamster inside,
and does not stop briefly to eat spinach, then there won't be any
more kinetic energy than that after the collision. The large ball
and the small ball will just have to share the same 2.25 joules.
The North Magnetic Pole is the point on the surface of Earth's Northern Hemisphere at which the planet's magnetic field points vertically downwards (in other words, if a magnetic compass needle is allowed to rotate about a horizontal axis, it will point straight down). There is only one location where this occurs, near (but distinct from) the Geographic North Pole and the Geomagnetic North Pole.