The highest point of a wave is called the crest. Among the choices, the correct answer is C. The height of the wave can be determined using the crest and the trough. The trough is the lowest point of a wave. The wavelength is the distance between two crests of a wave.
Please ignore my comment -- mass is not needed, here is how to solve it. pls do the math
at bottom box has only kinetic energy
ke = (1/2)mv^2
v = initial velocity
moving up until rest work done = Fs
F = kinetic fiction force = uN = umg x cos(a)
s = distance travel = h/sin(a)
h = height at top
a = slope angle
u = kinetic fiction
work = Fs = umgh x cot(a)
ke = work (use all ke to do work)
(1/2)mv^2 = umgh x cot(a)
u = (1/2)v^2 x tan (a) / gh
Answer:
The distance traveled during its acceleration, d = 214.38 m
Explanation:
Given,
The object's acceleration, a = -6.8 m/s²
The initial speed of the object, u = 54 m/s
The final speed of the object, v = 0
The acceleration of the object is given by the formula,
a = (v - u) / t m/s²
∴ t = (v - u) / a
= (0 - 54) / (-6.8)
= 7.94 s
The average velocity of the object,
V = (54 + 0)/2
= 27 m/s
The displacement of the object,
d = V x t meter
= 27 x 7.94
= 214.38 m
Hence, the distance the object traveled during that acceleration is, a = 214.38 m
Answer:
a)<em> 2000 W/m² </em><em>; </em>b) 636.94 W/m<em>².sr ; </em><em>c) </em>0.5
Explanation:
a)
The formula for calculation of total emissive power is:
Total emissive power = E =
E'<em>λdλ</em>
<em> </em>=
(0)d<em>λ + </em>
(100)d<em>λ + </em>
(200)d<em>λ + </em>
(100)d<em>λ </em>
(0)d<em>λ</em>
<em>where a = 5; b = 10; c = 15; d = 20; e = 25</em>
<em> = 0 +100(10-5) + 200(15-10) +100(20-15) + 0</em>
<em> = 2000 W/m²</em>
b)
The formula for total intensity of radiation is:
I
= E/π = 200/3.14 = 636.94 W/m<em>².sr </em>
<em>c)</em>
Fo submissive power leaving the surface in range π/4 ≤θ≤π/2
[E(π/4 ≤θ≤π/2)]/E = 

Icosθsinθ dθdΦdλ
where f = infinity, g=2π, h=π/4, i=π/2
By simplifying, we get
= (-1/2)[cos(2π/2)-cos(2π/2)]
= -0.5(-1-0)
=0.5