Answer:
108.9g of Silver can be produced from 125g of Ag2S
Explanation:
The compound Ag2S shows that two atoms of Silver Ag, combined with an atom of Sulphur S to form Ag2S. We can as well say the combination ration of Silver to Sulphur is 2:1
•Now we need to calculate the molecular weight of this compound by summing up the molar masses of each element in the compound.
•Molar mass of Silver Ag= 107.9g/mol
•Molar mass of Sulphur S= 32g/mol
•Molecular weight of Ag2S= (2×107.9g/mol) + 32g/mol
•Molecular weight of Ag2S= 215.8g/mol + 32g/mol= 247.8g/mol
•From our calculations, we know that 215.8g/mol of Ag is present in 247.8g/mol of Ag2S
If 247.8g Ag2S produced 215.8g Ag
125g Ag2S will produce xg Ag
cross multiplying we have
xg= 215.8g × 125g / 247.8g
xg= 26975g/247.8
xg= 108.85g
Therefore, 108.9g of Silver can be produced from 125g of Ag2S
You have to add a photo to we can understand - Yuno Gasai
Chemical energy is converted to thermal energy.
The products of reaction are ZnSO4 and H2. Since ZnSO4 is in aqueous form (aq), therefore only H2 and water vapor contributes to the overall total pressure in the system.
Total Pressure = 764 torr = H2 partial pressure + Water partial pressure
Since Water partial pressure is 26.74 torr so,
H2 partial pressure = 737.26 torr = 0.97 atm
Answer:
A. When temperature increases, the number and energy of collisions between particles increases, which increases the rate of the reaction.
Explanation:
The reaction rate measures the speed with which a reaction proceeds. Based on the collision theory of reaction rates, the rate of a given reaction depends on the number of collisions per time and how successful or effective the collisions are.
Reaction rate in view of the collision theory is very related to concentration and temperature. Both properties are directly proportional to the rate of a reaction.
As temperature increase, the rate of the reaction increases due to the number of effective collisions and the energy of between colliding particles.