Answer:
It is more important because of the freedom.
Explanation:
While at home you can do your work of course... but you could lay down, take a nap. You could get on the game, play around. You could draw, and fiddle and dance and do WHATEVER you want with no teacher to stop you so you have to be your own motivation. You have to be your own teacher or its VERY easy to fail.
To squeeze a gas into a dmaller place is to compress it.
Answer:
% = 76.75%
Explanation:
To solve this problem, we just need to use the expressions of half life and it's relation with the concentration or mass of a compound. That expression is the following:
A = A₀ e^(-kt) (1)
Where:
A and A₀: concentrations or mass of the compounds, (final and initial)
k: constant decay of the compound
t: given time
Now to get the value of k, we should use the following expression:
k = ln2 / t₁/₂ (2)
You should note that this expression is valid when the reaction is of order 1 or first order. In this kind of exercises, we can assume it's a first order because we are not using the isotope for a reaction.
Now, let's calculate k:
k = ln2 / 956.3
k = 7.25x10⁻⁴ d⁻¹
With this value, we just replace it in (1) to get the final mass of the isotope. The given time is 1 year or 365 days so:
A = 250 e^(-7.25x10⁻⁴ * 365)
A = 250 e^(-0.7675)
A = 191.87 g
However, the question is the percentage left after 1 year so:
% = (191.87 / 250) * 100
<h2>
% = 76.75%</h2><h2>
And this is the % of isotope after 1 year</h2>