Answer:
frictonal force due to the surface of irregularities
Answer:
the mass of water is 0.3 Kg
Explanation:
since the container is well-insulated, the heat released by the copper is absorbed by the water , therefore:
Q water + Q copper = Q surroundings =0 (insulated)
Q water = - Q copper
since Q = m * c * ( T eq - Ti ) , where m = mass, c = specific heat, T eq = equilibrium temperature and Ti = initial temperature
and denoting w as water and co as copper :
m w * c w * (T eq - Tiw) = - m co * c co * (T eq - Ti co) = m co * c co * (T co - Ti eq)
m w = m co * c co * (T co - Ti eq) / [ c w * (T eq - Tiw) ]
We take the specific heat of water as c= 1 cal/g °C = 4.186 J/g °C . Also the specific heat of copper can be found in tables → at 25°C c co = 0.385 J/g°C
if we assume that both specific heats do not change during the process (or the change is insignificant)
m w = m co * c co * (T eq - Ti co) / [ c w * (T eq - Tiw) ]
m w= 1.80 kg * 0.385 J/g°C ( 150°C - 70°C) /( 4.186 J/g°C ( 70°C- 27°C))
m w= 0.3 kg
Answer:
0.5 V
Explanation:
The electric potential distance between different locations in an electric field area is unaffected by the charge that is transferred between them. It is solely dependent on the distance. Thus, for two electrons pushed together at the same distance into the same field, the electric potential will remain at 1 V. However, the electric potential of one of the two electrons will be half the value of the electric potential for the two electrons.
There are many advantages<span> to </span>geothermal energy.Geothermal energy<span> is renewable </span>energy<span> because once water or steam is used, it can be pumped back into the ground. It is also clean </span>energy<span>. </span>Geothermal <span>power plants, unlike plants that burn fossil fuels, do not produce greenhouse gases that can be harmful to the atmosphere.
</span>