Answer:
The Earth weighs about:
13,170,000,000,000,000,000,000,000 pounds
or
5.97 billion trillion metric tons
Explanation:
Have a great rest of your day
#TheWizzer
Answer:
The length of the wire is approximately 67.1 m
Explanation:
The parameters of the pendulum are;
The mass of the pendulum, m = 28 kg
The angle between the pendulum weight and the wire, θ = 89°
The magnitude of the torque exerted by the pendulum's weight, τ = 1.84 × 10⁴ N·m
We have;
Torque, τ = F·L·sinθ = m·g·l·sinθ
Where;
F = The applies force = The weight of the pendulum = m·g
g = The acceleration due to gravity ≈ 9.8 m/s²
l = The length of the wire
Plugging in the values of the variables gives;
1.84 × 10⁴ N·m = 28 kg × 9.8 m/s² × l × sin(89°)
Therefore;
l = 1.84 × 10⁴ N·m/(28 kg × 9.8 m/s² × sin(89°)) = 67.0656080029 m ≈ 67.1 m
The length of the wire, l ≈ 67.1 m
a. The risk of injury must be predictable.
b. A "breach of duty" is when a professional fails to uphold a level of care.
c. There must be a standard of care in place, and the practitioner must assume responsibility for the patient.
d. There must be a clear link between the treatment received and the harm.
<h3>What is malpractice?</h3>
Malpractice, commonly referred to as professional negligence, is defined as "an incident of carelessness or incompetence on the part of a professional" under tort law.
The following professionals might be the target of malpractice claims:
Medical professionals: If a doctor or other healthcare practitioner does not exercise the level of care and competence that a similarly situated professional in the same medical field would deliver under the circumstances, a medical malpractice claim may be made against them.
Lawyers: Failure to provide services with the amount of competence, care, and diligence that a reasonable lawyer would use in the same situation may be grounds for a legal malpractice claim.
To know more about malpractice, visit;
brainly.com/question/25441985
#SPJ4
Answer:
The coefficient of friction and acceleration are 0.37 and 2.2 m/s²
Explanation:
Suppose we find the coefficient of friction and the acceleration of the 100 kg block during the time that the 60 kg block remains in contact.
Given that,
Mass of block = 60 kg
Acceleration = 2.0 m/s²
Mass = 100 kg
Horizontal force = 340 N
Let the frictional force be f.
We need to calculate the frictional force
Using balance equation
Put the value into the formula
We need to calculate the coefficient of friction
Using formula of friction force
We need to calculate the acceleration of the 100 kg block
Using formula of newton's law
Hence, The coefficient of friction and acceleration are 0.37 and 2.2 m/s²