Answer:
vp = 0.94 m/s
Explanation
Formula
Vp = position/ time
position: Initial position - Final position
Position = 25 m - (-7 m) = 25 m + 7 m = 32 m
Then
Vp = 32 m / 34 seconds
Vp = 0.94 m/s
Pressure and heat. I hope this helps
The speed of the pin after the elastic collision is 9 m/s east.
<h3>
Final speed of the pin</h3>
The final speed of the pin is calculated by applying the principle of conservation of linear momentum as follows;
m1u1 + mu2 = m1v1 + m2v2
where;
- m is the mass of the objects
- u is the initial speed of the objects
- v is the final speed of the objects
4(1.4) + 0.4(0) = 4(0.5) + 0.4v2
5.6 = 2 + 0.4v2
5.6 - 2 = 0.4v2
3.6 = 0.4v2
v2 = 3.6/0.4
v2 = 9 m/s
Thus, The speed of the pin after the elastic collision is 9 m/s east.
Learn more about linear momentum here: brainly.com/question/7538238
#SPJ1
The object has been golaced in water
Answer:
X-rays travel through space faster than radio waves.
Explanation:
Electromagnetic waves consist of oscillations of the electric and the magnetic field in a plane perpendicular to the direction of motion the wave.
All electromagnetic waves travel in a vacuum always at the same speed, the speed of light, whose value is:

Electromagnetic waves are classified into 7 different types, according to their wavelength/frequency. From shortest to longest wavelength (and so, from highest to lowest frequency), we have:
Gamma rays
X rays
Ultraviolet
Visible light
Infrared radiation
Microwaves
Radio waves
Now we can analyze the 4 statements:
X-rays and radio waves are both forms of light, or electromagnetic radiation --> TRUE. They are both types of electromagnetic waves.
X-rays have higher frequency than radio waves. --> TRUE, as we can see from the table above.
X-rays have shorter wavelengths than radio waves. --> TRUE, as we can see from the table above.
X-rays travel through space faster than radio waves. --> FALSE: all electromagnetic waves travel in space at the same speed, the speed of light.