Earth's dynamic processes allow our planet to recycle air, surface materials, and water. The correct answer is D.
Answer:
wish I could help
Explanation:
I been rereading this and I can't solve it lemme go ask people in ma house real quick
Answer:
v = √[gR (sin θ - μcos θ)]
Explanation:
The free body diagram for the car is presented in the attached image to this answer.
The forces acting on the car include the weight of the car, the normal reaction of the plane on the car, the frictional force on the car and the net force on the car which is the centripetal force on the car keeping it in circular motion without slipping.
Resolving the weight into the axis parallel and perpendicular to the inclined plane,
N = mg cos θ
And the component parallel to the inclined plane that slides the body down the plane at rest = mg sin θ
Frictional force = Fr = μN = μmg cos θ
Centripetal force responsible for keeping the car in circular motion = (mv²/R)
So, a force balance in the plane parallel to the inclined plane shows that
Centripetal force = (mg sin θ - Fr) (since the car slides down the plane at rest, (mg sin θ) is greater than the frictional force)
(mv²/R) = (mg sin θ - μmg cos θ)
v² = R(g sin θ - μg cos θ)
v² = gR (sin θ - μcos θ)
v = √[gR (sin θ - μcos θ)]
Hope this Helps!!!
The best answer is C.
The stability of atoms depends on whether or not their outermost shell is filled with electrons. If the outer shell is filled with electrons, the atom is stable and therefore they do not need to react with other elements to become stable.
On the other hand, atoms with unfilled outer shells are unstable, and will usually form chemical bonds with other atoms to achieve stability. To achieve stability, atoms will form two types of chemical bonds called ionic bonds and covalent bonds.