Answer:
The answers are in the explanation section below
Explanation:
1) The generalization that can be made from the exploration is that as we move away from the positive electrode, the potential energy gets lower. If we move away from the negative electrode, then the potential energy becomes higher.
2) The positive test charge will have the least potential energy when it gets to the negative electrode point.
3) To move one electron 1m in a direction along one of the equal potential lines, there is no energy needed. Zero work will be required for a charge to move on the equipotential line.
4) If lightning strikes a tree 20m away, it would be better to face the tree or have our back facing the tree. This is because the equipotential line will be present at the point where our body stands, this will protect from electric shock.
The pattern to be sketched is attached.
Answer:
Electrons are influenced by internal forces.
-On the temperature, density of electrons per unit of volume and relaxation time.
-The temperature
Explanation:
The Drude model neglects interactions between electrons and ions and with themselves. Those interactions (by which we refer as electromagnetic forces) influence in the random movement and freedom of the electron. So, they could be more restricted or could influence in conductivity more.
The deduction of the resistivity comes from the Ohm's law, which states that the Electric field in the material is proportional to the current density of electrons by a constant, which is the resistivity itself. The equation goes as follows:

Where e refers to electron (or the charge of it), τ is the relaxation time (average time between collisions), m is the mass and n is the density of charges (electrons in this case) per volume. However, experimentally resistivity is also dependent on temperature, which actually influence the relaxation time. The thermal energy influence in the behavior of the electrons, making them collide with phonons, have more randomness and reduced mean free path.
Answer:
4th answer
Explanation:
The gradient of a distance-time graph gives the speed.
gradient = distance / time = speed
Here, the gradient is a constant till 30s. So it has travelled at a constant speed. It means it had not accelarated till 30s. and has stopped moving at 30s.
The Law of Conservation of Energy
Work = force * distance
and newton*meters = Joule
In this case, work = 250N*50m = 12500 J
So the answer is D) 12,500 J