1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lelechka [254]
3 years ago
7

Newton's second law A. describes how an object accelerates when a force is applied B. says that objects eventually stop unless a

force is applied C. objects with mass attract each other D. forces come in action/reaction pairs E. an object will remain in uniform motion unless acted upon by a force F. like charges repel, opposite charges attract
Physics
1 answer:
Papessa [141]3 years ago
8 0

Answer:

A. describes how an object accelerates when a force is applied

Explanation:

Newton's second law of motion concerns the behavior of objects that do not have a stability between all established forces. The second law states that an object's acceleration depends on two factors: the net force on the entity and the entity's mass.

You might be interested in
Impact of electricity in the society
Travka [436]

Answer:

<h2>Electricity has many uses in our day to day life. It is used for lighting rooms, working fans and domestic appliances like using electric stoves, A/C and more. All these provide comfort to people. In factories, large machines are worked with the help of electricity.</h2>

5 0
2 years ago
The notes produced by a tuba range in frequency from approximately 45 Hz to 375 Hz. Find the possible range of wavelengths in ai
taurus [48]

Answer:

The possible range of wavelengths in air produced by the instrument is 7.62 m and 0.914 m respectively.

Explanation:

Given that,

The notes produced by a tuba range in frequency from approximately 45 Hz to 375 Hz.

The speed of sound in air is 343 m/s.

To find,

The wavelength range for the corresponding frequency.

Solution,

The speed of sound is given by the following relation as :

v=f_1\lambda_1

Wavelength for f = 45 Hz is,

\lambda_1=\dfrac{v}{f_1}

\lambda_1=\dfrac{343}{45}=7.62\ m

Wavelength for f = 375 Hz is,

\lambda_2=\dfrac{v}{f_2}

\lambda_2=\dfrac{343}{375}=0.914\ m/s

So, the possible range of wavelengths in air produced by the instrument is 7.62 m and 0.914 m respectively.

6 0
3 years ago
Two particles with masses 2m and 9m are moving toward each other along the x axis with the same initial speeds vi. Particle 2m i
s2008m [1.1K]

Answer:

The final speed for the mass 2m is v_{2y}=-1,51\ v_{i} and the final speed for the mass 9m is v_{1f} =0,85\ v_{i}.

The angle at which the particle 9m is scattered is \theta = -66,68^{o} with respect to the - y axis.

Explanation:

In an elastic collision the total linear momentum and the total kinetic energy is conserved.

<u>Conservation of linear momentum:</u>

Because the linear momentum is a vector quantity we consider the conservation of the components of momentum in the x and y axis.

The subindex 1 will refer to the particle 9m and the subindex 2 will refer to the particle 2m

\vec{p}=m\vec{v}

p_{xi} =p_{xf}

In the x axis before the collision we have

p_{xi}=9m\ v_{i} - 2m\ v_{i}

and after the collision we have that

p_{xf} =9m\ v_{1x}

In the y axis before the collision p_{yi} =0

after the collision we have that

p_{yf} =9m\ v_{1y} - 2m\ v_{2y}

so

p_{xi} =p_{xf} \\7m\ v_{i} =9m\ v_{1x}\Rightarrow v_{1x} =\frac{7}{9}\ v_{i}

then

p_{yi} =p_{yf} \\0=9m\ v_{1y} -2m\ v_{2y} \\v_{1y}=\frac{2}{9} \ v_{2y}

<u>Conservation of kinetic energy:</u>

\frac{1}{2}\ 9m\ v_{i} ^{2} +\frac{1}{2}\ 2m\ v_{i} ^{2}=\frac{1}{2}\ 9m\ v_{1f} ^{2} +\frac{1}{2}\ 2m\ v_{2f} ^{2}

so

\frac{11}{2}\ m\ v_{i} ^{2} =\frac{1}{2} \ 9m\ [(\frac{7}{9}) ^{2}\ v_{i} ^{2}+ (\frac{2}{9}) ^{2}\ v_{2y} ^{2}]+ m\ v_{2y} ^{2}

Putting in one side of the equation each speed we get

\frac{25}{9}\ m\ v_{i} ^{2} =\frac{11}{9}\ m\ v_{2y} ^{2}\\v_{2y} =-1,51\ v_{i}

We know that the particle 2m travels in the -y axis because it was stated in the question.

Now we can get the y component of the  speed of the 9m particle:

v_{1y} =\frac{2}{9}\ v_{2y} \\v_{1y} =-0,335\ v_{i}

the magnitude of the final speed of the particle 9m is

v_{1f} =\sqrt{v_{1x} ^{2}+v_{1y} ^{2} }

v_{1f} =\sqrt{(\frac{7}{9}) ^{2}\ v_{i} ^{2}+(-0,335)^{2}\ v_{i} ^{2} }\Rightarrow \ v_{1f} =0,85\ v_{i}

The tangent that the speed of the particle 9m makes with the -y axis is

tan(\theta)=\frac{v_{1x} }{v_{1y}} =-2,321 \Rightarrow\theta=-66,68^{o}

As a vector the speed of the particle 9m is:

\vec{v_{1f} }=\frac{7}{9} v_{i} \hat{x}-0,335\ v_{i}\ \hat{y}

As a vector the speed of the particle 2m is:

\vec{v_{2f} }=-1,51\ v_{i}\ \hat{y}

8 0
3 years ago
A jetliner has a velocity of 95 m/s. What is the displacement of the jetliner at t=3.0 seconds?
charle [14.2K]
Distance = speed / time

speed = 95 m/s
time = 3 s

distance = 95 / 3 m

displacement = 95/3 m or 32 m (2 s.f.)
5 0
3 years ago
A rock is dropped from a height of 3.4 m. How much time does it take to hit
siniylev [52]
Answer: 33.32 s

Explanation: gravity =9.8m/s2 which means that 3.4mx9.8m/s2=33.32s

I hope this helped ! Sorry if it’s wrong :)
6 0
3 years ago
Other questions:
  • FORENSIC SCIENCE--
    12·1 answer
  • How far does a cyclist travel if she's going 6 m/s in 10 seconds?
    9·1 answer
  • Relate a real life phenomenon with each branch of physics
    11·1 answer
  • Two ice skaters, with masses of 69 kg and 57 kg , stand facing each other on a 18-m-wide frozen river. The skaters push off agai
    9·1 answer
  • If you were traveling away from Earth at speed 0.5c, would you notice a change in your heartbeat? Would your mass, height, or wa
    6·1 answer
  • How is Venus’ rotation different than most planets? Question 3 options: A.It spins the opposite direction of most planets. B.It
    7·1 answer
  • A postman needs to deliver a parcel to Peter's house 5
    11·1 answer
  • When you throw a ball up in the air, it travels up and then stops instantaneously before falling back down. At the point where i
    9·1 answer
  • At what rate is work done if the 250 Newton object from number six is moved into a hot at 4 m in four seconds
    7·1 answer
  • If salt and sand are mixed with water, which methods would be used to separate the mixture?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!