According to Dalton's law of partial pressure, the total pressure exerted is simply equal to the sum of the partial pressures of the individual gases. Given that all three samples of gas each exert 740 mmHg, when they are placed in a single 2 L container, they exert a pressure of 2220 mmHg on the container which is the sum of their individual pressures.
Choice-'b' says the formula for kinetic energy in words.
KE = (1/2) · (M) · (S²)
Answer:
The the intensity at an 11° angle to the axis in terms of the intensity of the central maximum is

Explanation:
From the question we are told that
The width of the slit is 
The wavelength is 
The angle is 
The intensity of at
to the axis in terms of the intensity of the central maximum. is mathematically represented as
![I_c = \frac{I}{I_o} = [ \frac{sin \beta }{\beta }] ^2](https://tex.z-dn.net/?f=I_c%20%3D%20%5Cfrac%7BI%7D%7BI_o%7D%20%20%3D%20%5B%20%5Cfrac%7Bsin%20%5Cbeta%20%20%7D%7B%5Cbeta%20%7D%5D%20%5E2)
Where
is mathematically represented as

substituting values


So
![I_c = \frac{I}{I_o} = [ \frac{sin (708.1) }{(708.1)}] ^2](https://tex.z-dn.net/?f=I_c%20%3D%20%5Cfrac%7BI%7D%7BI_o%7D%20%20%3D%20%5B%20%5Cfrac%7Bsin%20%28708.1%29%20%20%7D%7B%28708.1%29%7D%5D%20%5E2)

Explanation:
It is given that,
Current in wire 1, I₁ = 10 A
Current in wire 2, I₂ = 20 A
Distance between wires, d = 10 cm = 0.1 m
Force per unit length is given by :




So, the magnetic force acting per unit length of the wires
. Since, the current is in same direction. So, the force is attractive in nature.