After looking at the transverse waves in the diagram you listed above, the one diagram that does represent the direction of particle X at the instant show in diagram number 3. The direction of the wave motion is up. The correct answer choice will be 3.
Ways to increase friction
<span>- increase the roughness of the contact materials </span>
<span>- increase the pressure on the contact </span>
<span>Ways to decrease friction </span>
<span>- float the moving body on air </span>
<span>- suck out any air </span>
Answer:
a) 69.3 m/s
b) 18.84 s
Explanation:
Let the initial velocity = u
The vertical and horizontal components of the velocity is given by uᵧ and uₓ respectively
uᵧ = u sin 40° = 0.6428 u
uₓ = u cos 40° = 0.766 u
We're given that the horizontal distance travelled by the projectile rock (Range) = 1 km = 1000 m
The range of a projectile motion is given as
R = uₓt
where t = total time of flight
1000 = 0.766 ut
ut = 1305.5
The vertical distance travelled by the projectile rocks,
y = uᵧ t - (1/2)gt²
y = - 900 m (900 m below the crater's level)
-900 = 0.6428 ut - 4.9t²
Recall, ut = 1305.5
-900 = 0.6428(1305.5) - 4.9 t²
4.9t² = 839.1754 + 900
4.9t² = 1739.1754
t = 18.84 s
Recall again, ut = 1305.5
u = 1305.5/18.84 = 69.3 m/s
Answer:
The axle is fixed to a frame or a block. The pulley is normally fixed to a support above the load. The load is tied to one end of the rope and the effort is applied at the other end. Such a pulley makes our work easier by simply changing the direction of the force, i.e. a load is lifted up using a downward effort.
May be this will help U