Answer:
Half
Explanation:
You only have to exert a force equal to half the weight of the load to lift it.
Answer:
d = 39.7 km
Explanation:
initial position of the boat is 45 km away at an angle of 15 degree East of North
so we will have


after some time the final position of the boat is found at 30 km at 15 Degree North of East
so we have


now the displacement of the boat is given as



so the magnitude is given as


Answer:
442.5 rad
Explanation:
w₀ = initial angular velocity of the disk = 7.0 rad/s
α = Constant angular acceleration = 3.0 rad/s²
t = time period of rotation of the disk = 15 s
θ = angular displacement of the point on the rim
Angular displacement of the point on the rim is given as
θ = w₀ t + (0.5) α t²
inserting the values
θ = (7.0) (15) + (0.5) (3.0) (15)²
θ = 442.5 rad
Answer:
(a) 43.2 kC
(b) 0.012V kWh
(c) 0.108V cents
Explanation:
<u>Given:</u>
- i = current flow = 3 A
- t = time interval for which the current flow =

- V = terminal voltage of the battery
- R = rate of energy = 9 cents/kWh
<u>Assume:</u>
- Q = charge transported as a result of charging
- E = energy expended
- C = cost of charging
Part (a):
We know that the charge flow rate is the electric current flow through a wire.

Hence, 43.2 kC of charge is transported as a result of charging.
Part (b):
We know the electrical energy dissipated due to current flow across a voltage drop for a time interval is given by:

Hence, 0.012V kWh is expended in charging the battery.
Part (c):
We know that the energy cost is equal to the product of energy expended and the rate of energy.

Hence, 0.108V cents is the charging cost of the battery.