1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aev [14]
3 years ago
10

A satellite of mass M = 270kg is in circular orbit around the Earth at an altitude equal to the earth's mean radius (6370 km). A

t this distance, the free-fall acceleration is g/4.
(a) What is the satellite's orbital speed (m/s)?
(b) What is the period of revolution (min)?
(c) What is the gravitational force on the satellite (N) ?
Physics
1 answer:
zubka84 [21]3 years ago
5 0

To solve this problem we will apply the concepts related to Orbital Speed as a function of the universal gravitational constant, the mass of the planet and the orbital distance of the satellite. From finding the velocity it will be possible to calculate the period of the body and finally the gravitational force acting on the satellite.

PART A)

V_{orbital} = \sqrt{\frac{GM_E}{R}}

Here,

M = Mass of Earth

R = Distance from center to the satellite

Replacing with our values we have,

V_{orbital} = \sqrt{\frac{(6.67*10^{-11})(5.972*10^{24})}{(6370*10^3)+(6370*10^3)}}

V_{orbital} = 5591.62m/s

V_{orbital} = 5.591*10^3m/s

PART B) The period of satellite is given as,

T = 2\pi \sqrt{\frac{r^3}{Gm_E}}

T = \frac{2\pi r}{V_{orbital}}

T = \frac{2\pi (2*6370*10^3)}{5.591*10^3}

T = 238.61min

PART C) The gravitational force on the satellite is given by,

F = ma

F = \frac{1}{4} mg

F = \frac{270*9.8}{4}

F = 661.5N

You might be interested in
Consider a spherical volume of space that is large enough to be considered homogeneous. Also consider a particle on the surface
LenKa [72]

Answer:

Option A applies.

A.  Greater than its escape speed from the mass within the volume

Explanation:

Here it is mentioned that the spherical volume is large enough for the space to be considered as homogeneous. Also, the pressure within the volume is negligible, so that will not result into the re collapse of the Universe. Now as per our knowing, Hubble's Law relates the average speed of the particle to the distance R between the Earth and the particle. So, if the particle's speed is greater than it's escape speed from the mass within the volume, then the Universe is bound to re collapse back again. Option A applies.

3 0
3 years ago
Which of the following scenarios would be optimal for obtaining a date from radioactive decay using these isotopes: 87Rb, 147Sm,
REY [17]

Answer:

a) 238U, 40K and 87Rb, b)   235U and to a lesser extent 40K , c)  he 235U,

d) possibility is 14C , e)this period would be ideal for 14C , f) 14C should be used since it is the one with the least average life time, even though the measurements must be very careful

Explanation:

One of the applications of radioactive decay is the dating of different systems.

To do this, the quantity of radioactive material in a meter is determined and with the average life time, the time of the sample is found.

Let's write the half-life times of the given materials

87Rb T ½ = 4.75 1010 years

147Sm T ½ = 1.06 1011 years

235U = 7,038 108 years

238U = 4.47 109 years

40K = 1,248 109 years

14C = 5,568 103 years

we already have the half-life of the different elements given

a) meteors. As these decomposed in the formation of the solar system, their life time is around 3 109 to 5 109 years, so it is necessary to look for elements that have a life time of this order, among the candidates we have 238U, 40K and 87Rb if these elements were at the moment of the formation of these meteors, there must still be rations in them, instead elements 14C already completely adequate

b) rock. The formation period is 4.20-108 years, therefore one of the most promising elements is 235U and to a lesser extent 40K since it is more abundant in rocks. The other elements with higher life times have not decayed and therefore will not give a true value and the 14C is completely decayed

c) volcanic ash. Formation time 6107 years, the only element that has the possibility of having a count is the 235U, the others have a life time so long that they have not decayed and the 14C is complete, unbent

d) scarp of an earthquake formation time 5 101 years, The only one that has any possibility is 14C even when it has declined very little, all the others, you have time to long that has not decayed

e) INCA excavation. The time of this civilization is about 10000 to 500 years (104 to 5 102 years), we see that this period would be ideal for 14C since it has some period of cementation, the others have not decayed

f) Tree in Blepharitis. 14C should be used since it is the one with the least average life time, even though the measurements must be very careful because of a period of disintegration. We have such a long time that they have not decayed

8 0
3 years ago
At the surface of Jupiter's moon Io, the acceleration due to gravity is 1.81 m/s2 . A watermelon has a weight of 44.0 N at the s
BabaBlast [244]

Answer:

Weight at the surface of Jupiter's moon Io is 8.13 N .

Explanation:

Given :

Acceleration due to gravity at the surface of Jupiter's moon is g_m=1.81\ m/s^2 .

Weight of watermelon in earth , W=44\ N .

Acceleration due to gravity at the surface of earth is g=9.81\ m/s^2 .

We know , weight is given by :

W=mg\\m=\dfrac{W}{g}\\\\m=4.49\ kg

Therefore , mass at the surface of Jupiter's moon Io is :

W_m=mg_m\\\\W_m=4.49\times 1.81\\\\W_m=8.13 \ N

Hence , this is the required solution .

6 0
3 years ago
A tennis ball is dropped from a roof. If it takes 38.9 seconds to reach the ground, how fast is the ball moving just before it h
Ilya [14]

Answer:

The velocity of the ball before it hits the ground is 381.2 m/s

Explanation:

Given;

time taken to reach the ground, t = 38.9 s

The height of fall is given by;

h = ¹/₂gt²

h = ¹/₂(9.8)(38.9)²

h = 7414.73 m

The velocity of the ball before it hits the ground is given as;

v² = u² + 2gh

where;

u is the initial velocity of the on the root = 0

v is the final velocity of the ball before it hits the ground

v² = 2gh

v = √2gh

v = √(2 x 9.8 x 7414.73 )

v = 381.2 m/s

Therefore, the velocity of the ball before it hits the ground is 381.2 m/s

5 0
2 years ago
Consider a 20 cm thick granite wall with a thermal conductivity of 2.79 W/m·K. The temperature of the left surface is held const
kozerog [31]

Answer:

The right wall surface temperature and heat flux through the wall is 35.5°C and 202.3W/m²

Explanation:

Thickness of the wall is  L=  20cm = 0.2m

Thermal conductivity of the wall is  K = 2.79 W/m·K

Temperature at the left side surface is T₁ =  50°C

Temperature of the air is T = 22°C

Convection heat transfer coefficient is  h = 15 W/m2·K

Heat conduction process through wall is equal to the heat convection process so

Q_{conduction} = Q_{convection}

Expression for the heat conduction process is

Q_{conduction} = \frac{K(T_1 - T)}{L}

Expression for the heat convection process is

Q_{convection} = h(T_2 - T)

Substitute the expressions of conduction and convection in equation above

Q_{conduction} = Q_{convection}

\frac{K(T_1 - T_2)}{L} = h(T_2 - T)

Substitute the values in above equation

\frac{2.79(50- T_2)}{0.2} = 15(T_2 - 22)\\\\T_2 = 35.5^\circC

Now heat flux through the wall can be calculated as

q_{flux} = Q_{conduction} \\\\q_{flux}  = \frac{K(T_1 - T_2)}{L}\\\\q_{flux}  = \frac{2.79(50 - 35.5)}{0.2}\\\\q_{flux} = 202.3W/m^2

Thus, the right wall surface temperature and heat flux through the wall is 35.5°C and 202.3W/m²

6 0
3 years ago
Other questions:
  • If I push a box at a constant rate is there friction force acting on it?
    14·1 answer
  • What never change despite what planet you go to
    14·1 answer
  • A satellite orbiting Earth has a tangential velocity of 5000 m/s. Earth’s mass is 6 × 1024 kg and its radius is 6.4 × 106 m.
    11·2 answers
  • Why is evaporation of water greater in summer?
    15·2 answers
  • A 0.50-kg object moves in a horizontal circular track with a radius of 2.5 m. An external forceof 3.0 N, always tangent to the t
    15·1 answer
  • consider a charge of -15.0 mCmoving to the right a 2.00x10^6 m/s in a mganetic field of .0300 T pointing upwards. What is the ma
    8·1 answer
  • Please help me i’ll mark u branliest !!
    8·1 answer
  • 14. When incoming light rays strike a flat, plane mirror at an
    14·1 answer
  • According to Einstein, space and time are _____
    5·2 answers
  • Click this link to view O*NET’s Work Styles section for Postal Service Mail Carriers. (Common work styles are listed near the to
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!