1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
brilliants [131]
3 years ago
7

An electron and a proton each have a thermal kinetic energy of 3kBT/2. Calculate the de Broglie wavelength of each particle at a

temperature of 1800 K. (kb is Boltzmann's constant, 1.38x10^-23 J/K). (1) Wavelength of the electron = ____ m (2) Wavelength of the proton = ______ m
Physics
1 answer:
S_A_V [24]3 years ago
7 0

Answer:

Given:

Thermal Kinetic Energy of an electron, KE_{t} = \frac{3}{2}k_{b}T

k_{b} = 1.38\times 10^{- 23} J/k = Boltzmann's constant

Temperature, T = 1800 K

Solution:

Now, to calculate the de-Broglie wavelength of the electron, \lambda_{e}:

\lambda_{e} = \frac{h}{p_{e}}

\lambda_{e} = \frac{h}{m_{e}{v_{e}}              (1)

where

h = Planck's constant = 6.626\times 10^{- 34}m^{2}kg/s

p_{e} = momentum of an electron

v_{e} = velocity of an electron

m_{e} = 9.1\times 10_{- 31} kg = mass of electon

Now,

Kinetic energy of an electron = thermal kinetic energy

\frac{1}{2}m_{e}v_{e}^{2} = \frac{3}{2}k_{b}T

}v_{e} = \sqrt{2\frac{\frac{3}{2}k_{b}T}{m_{e}}}

}v_{e} = \sqrt{\frac{3\times 1.38\times 10^{- 23}\times 1800}{9.1\times 10_{- 31}}}

v_{e} = 2.86\times 10^{5} m/s                    (2)

Using eqn (2) in (1):

\lambda_{e} = \frac{6.626\times 10^{- 34}}{9.1\times 10_{- 31}\times 2.86\times 10^{5}} = 2.55 nm

Now, to calculate the de-Broglie wavelength of proton, \lambda_{e}:

\lambda_{p} = \frac{h}{p_{p}}

\lambda_{p} = \frac{h}{m_{p}{v_{p}}                             (3)

where

m_{p} = 1.6726\times 10_{- 27} kg = mass of proton

v_{p} = velocity of an proton

Now,

Kinetic energy of a proton = thermal kinetic energy

\frac{1}{2}m_{p}v_{p}^{2} = \frac{3}{2}k_{b}T

}v_{p} = \sqrt{2\frac{\frac{3}{2}k_{b}T}{m_{p}}}

}v_{p} = \sqrt{\frac{3\times 1.38\times 10^{- 23}\times 1800}{1.6726\times 10_{- 27}}}

v_{p} = 6.674\times 10^{3} m/s                               (4)                    

Using eqn (4) in (3):

\lambda_{p} = \frac{6.626\times 10^{- 34}}{1.6726\times 10_{- 27}\times 6.674\times 10^{3}} = 5.94\times 10^{- 11} m = 0.0594 nm

You might be interested in
Which statement best compares an asteroid with Earth?
IgorLugansk [536]

Answer:C) Both have rocky composition

6 0
2 years ago
A 75-g bullet is fired from a rifle having a barrel 0.540 m long. choose the origin to be at the location where the bullet begin
lyudmila [28]
Part a) The work done by the gas on the bullet is the integral of the force in dx, where x is the distance covered by the bullet inside the barrel with respect to the origin:
W= \int\limits^{0.540m}_{0} {F} \, dx =  \int\limits^{0.540m}_{0} {(16000+10000x-26000x^2)} \, dx =
=16000x+10000  \frac{x^2}{2} - 26000  \frac{x^3}{3}
By substituting the length of the barrel, L=0.540 m, we find the total work done by the gas on the bullet:
W=16000(0.540m)+10000  \frac{(0.540m)^2}{2} - 26000  \frac{(0.540m)^3}{3}  =
=8733 J=8.73 kJ

part b) The resolution of the problem is the same, we just have to use the new length of the barrel (L=0.95 m) inside the final formula, and we find the new value of the work:
W=16000(0.95m)+10000  \frac{(0.95m)^2}{2} - 26000  \frac{(0.95m)^3}{3}  =
=12280 J=12.28 kJ
5 0
2 years ago
A student has designed a circuit with one battery, two light bulbs, and two switches, pictured to the left. She would like for e
Gnoma [55]

Answer:

The bulb is not powered because the negative end of the battery is not connected to the electric current,making it dysfunctional. The electrons have to flow through the positive and negative ends of the battery in order for it to work.

Hope this helps.

5 0
3 years ago
Read 2 more answers
How do the dark lines of an atom''s absorption spectrum relate to the bright lines of its emission spectrum?
tangare [24]

Wouldn't it be neat if an electron falling closer to the nucleus ... emitting a
photon ... actually gave out more energy than it needed to climb to its original
energy level by absorbing a photon !   If there were some miraculous substance
that could do that, we'd have it made.

All we'd need is a pile of it in our basement, with a bright light bulb over the pile,
connected to a tiny hand-crank generator.

Whenever we wanted some energy, like for cooking or heating the house, we'd
switch the light bulb on, point it towards the pile, and give the little generator a
little shove.  It wouldn't take much to git 'er going.

The atoms in the pile would absorb some photons, raising their electrons to higher
energy levels.  Then the electrons would fall back down to lower energy levels,
releasing more energy than they needed to climb up.  We could take that energy,
use some of it to keep the light bulb shining on the pile, and use the extra to heat
the house or run the dishwasher.

The energy an electron absorbs when it climbs to a higher energy level (forming
the atom's absorption spectrum) is precisely identical to the energy it emits when
it falls back to its original level (creating the atom's emission spectrum).

Energy that wasn't either there in the atom to begin with or else pumped
into it from somewhere can't be created there.

You get what you pay for, or, as my grandfather used to say, "For nothing
you get nothing."

3 0
2 years ago
Which factors affect heat transfer between a warm and a cool substance?
damaskus [11]
Factors that affect heat transfer are:

1) Difference in temperature, 
2) Mass of the object
3) Specific heat of the object

Hope this helps!
8 0
2 years ago
Other questions:
  • The depth of a pond is determined by a scientist using a sonic ranger. It
    10·1 answer
  • 1. is the full moon a spring tide or neap tide
    6·2 answers
  • How many grams of CO-60 result in 1 Millicuire of activity? How many years until the activity decays to 1 microcuire tl/2 =5.3 Y
    12·1 answer
  • 1. An object is moving to the right while a force directed to the left acts on the object. Is this force
    13·1 answer
  • How is sound detected by the brain
    9·2 answers
  • Power is work done over a what?
    7·1 answer
  • What is the speed od sail boat that us traveling 100 meters in 120 seconds?​
    14·1 answer
  • The type of brightness in which all
    13·1 answer
  • 12. Since the Clean Air Act was passed in 1970, why is the air still not clean?
    10·1 answer
  • Most people can throw a baseball farther than a bowling ball, and most people would find it less painful to catch a flying baseb
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!