Answer: The exit temperature of the gas in deg C is
.
Explanation:
The given data is as follows.
= 1000 J/kg K, R = 500 J/kg K = 0.5 kJ/kg K (as 1 kJ = 1000 J)
= 100 kPa,
We know that for an ideal gas the mass flow rate will be calculated as follows.
or, m =
=
= 10 kg/s
Now, according to the steady flow energy equation:
= 5 K
= 5 K + 300 K
= 305 K
= (305 K - 273 K)
=
Therefore, we can conclude that the exit temperature of the gas in deg C is
.
Answer:

Explanation:
The mass inside the rigid tank before the high pressure stream enters is:



The final mass inside the rigid tank is:



The supplied air mass is:



Answer:
A) About
newtons
B) 76.518 newtons
C) 111.834 newtons
Explanation:
A)
, where G is the universal gravitational constant, M 1 and 2 are the masses of both objects in kilograms, and r is the radius in meters. Plugging in the given numbers, you get:

B) You can find the weight of each object on Earth because you know the approximate acceleration due to gravity is 9.81m/s^2. Multiplying this by the mass of each object, you get a weight for the first particle of 76.518 newtons.
C) You can do a similar thing to the previous particle and find that its weight is 11.4*9.81=111.834 newtons.
Hope this helps!
Answer:
Free convection:
When heat transfer occurs due to density difference between fluid then this type of heat transfer is know as free convection.The velocity of fluid is zero or we can say that fluid is not moving.
Force convection:
When heat transfer occurs due to some external force then this type of heat transfer is know as force convection.The velocity of fluid is not zero or we can say that fluid is moving in force convection.
Heat transfer coefficient of force convection is high as compare to the natural convection.That is why heat force convection reach a steady-state faster than an object subjected to free-convection.
We know that convective heat transfer given as
q = h A ΔT
h=Heat transfer coefficient
A= Surface area
ΔT = Temperature difference