Answer:
frequency = 0.47×10⁴ Hz
Explanation:
Given data:
Wavelength of wave = 6.4× 10⁴ m
Frequency of wave = ?
Solution:
Formula:
Speed of wave = wavelength × frequency
Speed of wave = 3 × 10⁸ m/s
Now we will put the values in formula.
3 × 10⁸ m/s = 6.4× 10⁴ m × frequency
frequency = 3 × 10⁸ m/s / 6.4× 10⁴ m
frequency = 0.47×10⁴ /s
s⁻¹ = Hz
frequency = 0.47×10⁴ Hz
Thus the wave with wavelength of 6.4× 10⁴ m have 0.47×10⁴ Hz frequency.
Answer:
Along period electronegativity and ionization energy increases.
Along group electronegativity and ionization energy decreases.
Explanation:
Along period:
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell. When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons. This effect lead to the greater nuclear attraction. Thus the attraction of the atoms for valance electrons increases. The electrons are pull towards the nucleus and valance shell get closer to the nucleus. As a result of this greater nuclear attraction atomic radius decreases and ionization energy increases because it is very difficult to remove the electron from atom and more energy is required, and electronegativity also increases.
Along group:
As we move from top to bottom in periodic table the atomic sizes increases.The electrons are added in next energy level in every next element. Thus the valance electrons farther away from the nucleus and hold of nucleus becomes weaker, because of weak nuclear attraction atomic radii increases and electronegativity and ionization energy decreases.
Answer:
e- 7.25 x 10³.
Explanation:
∵ ΔG = -RTlnK,
where, ΔG is the free energy change.
R is the general gas constant (R = 8.324 J/mol.K).
K is the equilibrium constant of the reaction.
- For the reaction: <em>N₂(g) + 3H₂(g) → 2NH₃(g),</em>
K = (PNH₃)²/(PN₂)(PH₂)³ = (0.65)²/(1.9)(1.6)³ = 5.43 x 10⁻².
∵ ΔG = -RTlnK.
∴ ΔG = -(8.314 J/mol.K)(298 K) ln(5.43 x 10⁻²) = 7.218 x 10³ J/mol.
Answer:1) Volume of
required is 55.98 mL.
2) 0.62577 grams of
is produced.
Explanation:

1) Molarity of 
Volume of 
Molarity of 
Volume of 


According to reaction, 1 mole of
reacts with 3 mole of
, then, 0.0041985 moles of
will react with:
moles of
that is 0.0125955 moles.


Volume of
required is 55.98 mL.
2)

Number of moles of
According to reaction, 3 moles of
gives 1 mole of
, then 0.004485 moles of
will give:
moles of
that is 0.001495 moles.
Mass of
=
Moles of
× Molar Mass of 
= 0.001495 moles × 418.58 g/mol = 0.62577 g
0.62577 grams of
is produced.