Answer:
less gravity, closest to the sun
Answer:
0.432 drinks are toxic
Explanation:
The toxic dose of ethylene glycol is 0.1 mL per kg body weight (mL/kg). In grams (Density ethylene glycol = 1.11g/mL):
1.11g/mL * (0.1mL / kg) = 0.111g/kg
If the victim weighs 85kg, its letal dose is:
85kg * (0.111g/kg) = 9.435g of ethylene glycol
Using the concentration of ethylene glycol in the liquid:
9.435g of ethylene glycol * (550g liquid / 120g ethylene glycol) = 43.2g of liquid are toxic.
The drinks are:
43.2g of liquid * (1 drink / 100 g) =
<h3>0.432 drinks are toxic</h3>
Answer:
Water purification is the process of removing undesirable chemicals, biological contaminants, suspended solids and gases from contaminated water. The goal is to produce water fit for a specific purpose. Most water is purified for human consumption (drinking water), but water purification may also be designed for a variety of other purposes, including meeting the requirements of medical, pharmacological, chemical and industrial applications. In general the methods used include physical processes such as filtration,sedimentation, and distillation, biological processes such as slow sand filters or biologically active carbon, chemical processes such asflocculation and chlorination and the use of electromagnetic radiation such as ultraviolet light.
Extreme lack or loss of water may lead to dehydration of the body and other health complications. For this reason, governments ensure that citizens have access to clean and safe water for domestic use. Clean water is essential in ensuring that no pathogens or impurities are ingested by people, either through direct drinking or through food.
To attain these standards of water, purification is important. Water purification involves physical and chemical processes, which are carried out stepwise to ensure the water is safe and free from any harm. This directional process essay synthesizes the steps, which have to be followed to achieve this task.
In essence, water purification denotes the process used to free water from impurities like bacteria and contaminants. Since the process is aimed at eliminating all the impurities present in the water, it is necessary to apply chemical and physical methods of separation in an orderly manner.
Explanation: