The integrated rate law expression for a first order reaction is
![ln\frac{[A_{0}]}{[A_{t}]}=kt](https://tex.z-dn.net/?f=ln%5Cfrac%7B%5BA_%7B0%7D%5D%7D%7B%5BA_%7Bt%7D%5D%7D%3Dkt)
where
[A0]=100
[At]=6.25
[6.25% of 100 = 6.25]
k = 9.60X10⁻³s⁻¹
Putting values

taking log of 100/6.25
100/6.25 = 16
ln(16) = 2.7726
Time = 2.7726 / 0.0096 = 288.81 seconds
When a liquid releases enough energy<span>. the </span>liquid<span> freezes, changing to a solid.
Hope this answer helps! feel free to ask any additional questions :)</span>
1) Start by standardizing the solution of NaOH by using the solution of H2SO4 whose concentration is known.
2) Equation:
2Na OH + H2SO4 --> Na2 SO4 + 2H2O
3) molar ratios
2 mol NaOH : 1 mol H2SO4
4) Number of moles of H2SO4 in 50.0 ml of 0.0782 M solution
M = n / V => n = M*V = 0.0782 M * 0.050 l = 0.00391 mol H2SO4
5) Number of moles of NaOH
2 moles NaOH / 1mol H2SO4 * 0.00391 mol H2SO4 = 0.00782 mol NaOH
6) Concentration of the solution of NaOH
M = n / V = 0.00782 mol / 0.0184 ml = 0.425 M
7) Standardize the solution of HCl
Chemical reaction:
NaOH + HCl --> NaCl + H2O
8) Molar ratios
1 mol NaOH : 1 mol HCl
9) Number of moles of NaOH in 27.5 ml
M = n / V => n = M * V = 0.425 M * 0.0275 l = 0.01169 moles NaOH
10) Number of moles of HCl
1 mol HCl / 1mol NaOH * 0.01169 mol NaOH = 0.01169 mol HCl
11) Concentration of the solution of HCl
M = n / V = 0.01169 mol / 0.100 l = 0.1169 M
Rounded to 3 significant figures = 0.117 M
Answers:
[NaOH] = 0.425 M
[HCl] = 0.117 M
Answer:
use chemical equation to that answer
The mass of nitroglycerin : 34.52 g
<h3>Further explanation</h3>
Reaction
4C₃H₅N₃O₉ ⇒ 12 CO₂ + 10H₂O + 6N₂ +O₂
Volume = 10 L
Temperature = -5°C=268 °K
Pressure = 1 atm
mol of CO₂ (ideal gas) :

mol ratio C₃H₅N₃O₉ : mol CO₂= 4 : 12, so mol C₃H₅N₃O₉ :

mass C₃H₅N₃O₉ (MW=227,0865 g/mol):
