Total = <span>products + reactants</span>
C
It is a idea which no kind of evidence is allowed to prove wrong
Mole of electron required by
mole is 
- Faraday law expressed how the change that is been being produced by a current at an electrode-electrolyte interface is related and proportional to the quantity of electricity that is been used.
- There is one mole of electron required for 1 Faraday of electricity.
- Avogadro constant is

- Mole of electron can be calculated by dividing the number of electron by avogadro's constant.
=
= 
Therefore, it requires
Faraday of electricity for the 
Learn more at: brainly.com/question/1640558?referrer=searchResults
As with most stoichiometry problems, it is necessary to work in moles. The ratio of the moles of each element will provide the ratio of the atoms of each element.
Get the mass of each element by assuming a certain overall mass for the sample (100 g is a good mass to assume when working with percentages).
Remeber that percentages are a ratio multiplied by 100. You must convert percentages back to their decimal value before working with them.
(.4838) (100 g) = 48.38 g C
(.0812 ) (100 g) = 8.12 g H
(.5350) (100 g) = 53.38 g O
Convert the mass of each element to moles of each element using the atomic masses.
(48.38 g C) (1 mol/ 12.10 g C) = 4.028 mol C
(8.12 g H) (1 mol/ 1.008 g H) = 8.056 mol H
(53.38 g O) (1 mol/ 16.00 g O) = 3.336 mol O
Find the ratio or the moles of each element by dividing the number of moles of each by the smallest number of moles.
Use the mole ratio to write the empirical formula.
Mercury Venus mars Jupiter Saturn