B. 0.937 atm
The total pressure of a gas mixture is simply the sum of the partial pressures of each gas within the mixture. So let's add them together: 0.875 atm + 0.0553 atm + 0.00652 atm = 0.93682 atm.
Since we only have 3 significant figures in our data, round the result to 3 figures, giving 0.937 atm, which exactly matches option "B" which is the correct answer.
Energy required to raise the temperature from 35°C - 45 °C= 25116 J.
specific heat, the quantity of warmth required to raise the temperature of one gram of a substance by means of one Celsius degree. The units of precise warmth are generally energy or joules consistent with gram according to Celsius diploma. for instance, the unique warmth of water is 1 calorie (or 4.186 joules) according to gram in step with Celsius degree.
solving,
Sample of liquid = 400. 0 g
temperature = 30. 0 ºc
joules of energy are required to raise the temperature of the water to 45. 0 ºc
therefore rise in temperature 45 - 30 = 15°C
Specific heat capacity = 4.186 J/g m °C
In kelvin = 273 + 15 = 288
= ∴ energy required = Q = m s ( t final - t initial)
= 400*4.186 * 15
= 25116 joule
Learn more about specific heat here:-brainly.com/question/21406849
#SPJ4
Answer:idk
Explanation:of a 0.26 M triethylamine, (C2H5)3N, solution. ... 5. Predict if a decrease in temperature is favorable for the following reactions: (5 pts) a. H2O(s)
Chlorofluorocarbons and other halogenated ozone depleting substances are mainly responsible for man made chemical ozone depletion.
Answer:
Attached below
Explanation:
Free energy of mixing = ΔGmix = Gf - Gi
attached below is the required derivation of the
<u>a) Molar Gibbs energy of mixing</u>
ΔGmix = Gf - Gi
hence : ΔGmix = ∩RT ( X1 In X1 + X2 In X2 + X3 In X3 + ------- )
<u>b) molar excess Gibbs energy of mixing</u>
Ni = chemical potential of gas
fi = Fugacity
N°i = Chemical potential of gas when Fugacity = 1
ΔG = RT In ( a2 / a1 )