Answer:
1. V₁ = 2.0 mL
2. V₁ = 2.5 mL
Explanation:
<em>You are provided with a stock solution with a concentration of 1.0 × 10⁻⁵ M. You will be using this to make two standard solutions via serial dilution.</em>
To calculate the volume required (V₁) in each dilution we will use the dilution rule.
C₁ . V₁ = C₂ . V₂
where,
C are the concentrations
V are the volumes
1 refers to the initial state
2 refers to the final state
<em>1. Perform calculations to determine the volume of the 1.0 × 10⁻⁵ M stock solution needed to prepare 10.0 mL of a 2.0 × 10⁻⁶ M solution.</em>
C₁ . V₁ = C₂ . V₂
(1.0 × 10⁻⁵ M) . V₁ = (2.0 × 10⁻⁶ M) . 10.0 mL
V₁ = 2.0 mL
<em>2. Perform calculations to determine the volume of the 2.0 × 10⁻⁶ M solution needed to prepare 10.0 mL of a 5.0 × 10⁻⁷ M solution.</em>
C₁ . V₁ = C₂ . V₂
(2.0 × 10⁻⁶ M) . V₁ = (5.0 × 10⁻⁷ M) . 10.0 mL
V₁ = 2.5 mL
Dalton Found out there was a small, hard indestructible sphere that is the smalles part of an element.He created his own Atomic Theory:
-All Matter is made up of small particles called atoms.
-Atoms cannot be created, destroyed, or divided into smaller particles.
-All atoms of the same element are identical in mass and size. The atoms of one element are different in mass and size from the atoms of other elements.
<span>-Compounds are created when atoms of different elements link together in definite proportions.
</span><span>Rutherford had found the positively charged nucleus in the middle of every atom using his Gold Foil Experiment. While doing this experiment, he expected these particles to just pass right through the foil but they bounced right back. He also proposed there were negatively charged electrons revolving around the nucleus.
</span><span>Thompson found negative electrons and inferred atoms also contain negative particles. He inferred there was a lump of positively charged material, with negative electrons throughout. He used the Raisins Bun Model to explain.
</span>Chadwick <span>proved that it consisted of a neutral particle with about the same mass as a proton "Neutron" is the name given to the particle</span>
Bohr believed Rutherford's prediction was correct, but it wasn't complete. Bohr proposed electrons could only move between energy levels, rather then being able to move everywhere.
a. 381.27 m/s
b. the rate of effusion of sulfur dioxide = 2.5 faster than nitrogen triiodide
<h3>Further explanation</h3>
Given
T = 100 + 273 = 373 K
Required
a. the gas speedi
b. The rate of effusion comparison
Solution
a.
Average velocities of gases can be expressed as root-mean-square averages. (V rms)

R = gas constant, T = temperature, Mm = molar mass of the gas particles
From the question
R = 8,314 J / mol K
T = temperature
Mm = molar mass, kg / mol
Molar mass of Sulfur dioxide = 64 g/mol = 0.064 kg/mol

b. the effusion rates of two gases = the square root of the inverse of their molar masses:

M₁ = molar mass sulfur dioxide = 64
M₂ = molar mass nitrogen triodide = 395

the rate of effusion of sulfur dioxide = 2.5 faster than nitrogen triodide
Answer:
How to Formulate an Effective Research Hypothesis
State the problem that you are trying to solve. Make sure that the hypothesis clearly defines the topic and the focus of the experiment.
Try to write the hypothesis as an if-then statement. ...
Define the variables.
Explanation:
Answer:
sugar cube is at great pressure
Explanation:
this is because great pressure means its more solid