1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zepler [3.9K]
3 years ago
14

A parallel plate capacitor with air between the plates has a potential difference of 71.0 V. Determine the potential difference

across the plates when a dielectric material (κ = 4.50) is introduced, filling the space between the plates.... I attached the formulas needed to solve this btw

Physics
1 answer:
Gwar [14]3 years ago
6 0

Answer:

15.8 V

Explanation:

The relationship between capacitance and potential difference across a capacitor is:

q=CV

where

q is the charge stored on the capacitor

C is the capacitance

V is the potential difference

Here we call C and V the initial capacitance and potential difference across the capacitor, so that the initial charge stored is q.

Later, a dielectric material is inserted between the two plates, so the capacitance changes according to

C'=kC

where k is the dielectric constant of the material. As a result, the potential difference will change (V'). Since the charge stored by the capacitor remains constant,

q=C'V'

So we can combine the two equations:

CV=CV'\\CV=(kC)V'\\V'=\frac{V}{k}

and since we have

V = 71.0 V

k = 4.50

We find the new potential difference:

V'=\frac{71.0}{4.50}=15.8 V

You might be interested in
A train is approaching a signal tower at a speed of 40m/s. The train engineer sounds the 1000-Hz whistle, while a switchman in t
stealth61 [152]

v = speed of the source of sound or the train towards the listener or switchman = 40 m/s

V = actual speed of sound = 340 m/s

f = actual frequency of sound as emitted from source or the train = 1000 Hz

f' = frequency as observed by the listener or by switchman = ?

Using Doppler's law , frequency observed by a listener from a source moving towards it is given as

f' = V f /(V - v)

inserting the values

f' = 340 x 1000 /(340 - 40)

f' = 340 x 1000/300


3 0
3 years ago
: In heavy rushIn heavy rush-hour traffic you drive in a straight line at 12 m/s for 1.5 minutes, then you have to stop for 3.5
zhuklara [117]
Guessing you want the average speed. We can multiple each speed by the time we spent going that speed, and them all together and then divide by the total time we spent in traffic to get the average speed. We spent a total of 7.5 minutes in traffic, so average speed  = (12*1.5+0*3.5+15*2.5)/7.5 = 7.4 m/s
8 0
3 years ago
1. A 6-volt battery produces a current of 0.5 amps. What is the power in the circuit?
allochka39001 [22]

Answer:

hope this will help you

have a great day

Explanation:

please mark me as the brainliest

8 0
2 years ago
Astronomers know that the distance between the Earth and the Sun averages 1.50 x108 km. How can astronomers use the observed ste
rodikova [14]

Answer:

The distance of stars and the earth can be averagely measured by using the knowledge of geometry to estimate the stellar parallax angle(p).

From the equation below, the stars distances can be calculated.

D = 1/p

Distance = 1/(parallax angle)

Stellar parallax can be used to determine the distance of stars from an observer, on the surface of the earth due to the motion of the observer. It is the relative or apparent angular displacement of the star, due to the displacement of the observer.

Explanation:

Parallax is the observed apparent change in the position of an object resulting from a change in the position of the observer. Specifically, in the case of astronomy it refers to the apparent displacement of a nearby star as seen from an observer on Earth.

The parallax of an object can be used to approximate the distance to an object using the formula:

D = 1/p

Where p is the parallax angle observed using geometry and D is the actual distance measured in parsecs. A parsec is defined as the distance at which an object has a parallax of 1 arcsecond. This distance is approximately 3.26 light years

3 0
3 years ago
An object initially at rest experiences an acceleration
lidiya [134]

Answer:

1.4m/s

Explanation:

Average velocity is the total distance covered divided by the total time taken.

 Average velocity  = \frac{total distance }{time }  

 Total time taken  = 5s + 6s  = 11s

The first distance covered  = velocity x time  = 1.4 x 5 = 7m

     second distance covered  = velocity x time  = 1.4 x 6  = 8.4m

So;

  Average velocity  = \frac{7 + 8.4}{11}    = 1.4m/s

5 0
3 years ago
Other questions:
  • A 4 kg body is traveling at 3 m/s with no external force acting on it. At a certain instant an internal explosion occurs, splitt
    8·1 answer
  • Clouds absorb outgoing radiation emitted by earth and reradiate a portion of it back to the surface during _____.
    11·1 answer
  • A resistance is added in parallel to a 470 Ω resistance to give an effective resistance of 330 Ω. What is the approximate value
    15·1 answer
  • A particle initially at rest moves along in a line so that its acceleration is a(t) = 10/(t+1) for t>=0.
    12·1 answer
  • Plz help I need the answers to this ASAP
    9·1 answer
  • Why do gases condense when they are cooled
    7·1 answer
  • Identical 50 μC charges are fixed on an x axis at x = ±3.0 m. A particle of charge q = -15 μC is then released from rest at a po
    9·1 answer
  • If a substance has a temperature of absolute zero, what can you say about the kinetic energy of the substance’s particles?
    13·1 answer
  • calculate the pressure of water having density 1000 kilo per metre square at a depth of 20 m inside the water​
    6·1 answer
  • A mimibus drives with a constant speed of 39 km/h. how far can it travel in 1.94 hours?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!