v = speed of the source of sound or the train towards the listener or switchman = 40 m/s
V = actual speed of sound = 340 m/s
f = actual frequency of sound as emitted from source or the train = 1000 Hz
f' = frequency as observed by the listener or by switchman = ?
Using Doppler's law , frequency observed by a listener from a source moving towards it is given as
f' = V f /(V - v)
inserting the values
f' = 340 x 1000 /(340 - 40)
f' = 340 x 1000/300
Guessing you want the average speed. We can multiple each speed by the time we spent going that speed, and them all together and then divide by the total time we spent in traffic to get the average speed. We spent a total of 7.5 minutes in traffic, so average speed = (12*1.5+0*3.5+15*2.5)/7.5 = 7.4 m/s
Answer:
hope this will help you
have a great day
Explanation:
please mark me as the brainliest
Answer:
The distance of stars and the earth can be averagely measured by using the knowledge of geometry to estimate the stellar parallax angle(p).
From the equation below, the stars distances can be calculated.
D = 1/p
Distance = 1/(parallax angle)
Stellar parallax can be used to determine the distance of stars from an observer, on the surface of the earth due to the motion of the observer. It is the relative or apparent angular displacement of the star, due to the displacement of the observer.
Explanation:
Parallax is the observed apparent change in the position of an object resulting from a change in the position of the observer. Specifically, in the case of astronomy it refers to the apparent displacement of a nearby star as seen from an observer on Earth.
The parallax of an object can be used to approximate the distance to an object using the formula:
D = 1/p
Where p is the parallax angle observed using geometry and D is the actual distance measured in parsecs. A parsec is defined as the distance at which an object has a parallax of 1 arcsecond. This distance is approximately 3.26 light years
Answer:
1.4m/s
Explanation:
Average velocity is the total distance covered divided by the total time taken.
Average velocity =
Total time taken = 5s + 6s = 11s
The first distance covered = velocity x time = 1.4 x 5 = 7m
second distance covered = velocity x time = 1.4 x 6 = 8.4m
So;
Average velocity =
= 1.4m/s