Answer:
a) 5.63 atm
Explanation:
We can use combined gas law
<em>The combined gas law</em> combines the three gas laws:
- Boyle's Law, (P₁V₁ =P₂V₂)
- Charles' Law (V₁/T₁ =V₂/T₂)
- Gay-Lussac's Law. (P₁/T₁ =P₂/T₂)
It states that the ratio of the product of pressure and volume and the absolute temperature of a gas is equal to a constant.
P₁V₁/T₁ =P₂V₂/T₂
where P = Pressure, T = Absolute temperature, V = Volume occupied
The volume of the system remains constant,
So, P₁/T₁ =P₂/T₂
a) 
Explanation:
Given that,
Two resistors of resistance 6 ohm and 3 ohm are connected in series and then in parallel.
For series combination,

For parallel combination,

When 6 ohm and 3 ohm are in series,

When 6 ohm and 3 ohm are in paralle,

So, the equivalent resistance in series combination is 9 ohms and in parallel combination it is 2 ohms.
Answer:
<em>I </em><em>don't</em><em> know</em><em> </em><em>what</em><em> </em><em>are </em><em>you </em><em>saying</em><em> </em><em>but </em><em>I </em><em>don't</em><em> </em><em>have </em><em>any</em><em> </em><em>results</em><em> </em>
Explanation:

Answer: please see attached work.
Explanation: please see attached work. Assuming 500 sheets of paper = 20 lb. (typicical value).