<u><em>Answer:</em></u>
<u><em>god knows.</em></u>
Explanation:
Your potential energy and mass don't tell what your weight is.
If I walk up from the first floor to the second floor, my weight hasn't
changed even though my potential energy has increased.
Missing question in the text:
"A.What are the magnitude and direction of the electric field at the point in question?
B.<span>What would be the magnitude and direction of the force acting on a proton placed at this same point in the electric field?"</span>
<span>Solution:
A) A charge q </span>under an electric field of intensity E will experience a force F equal to:

In our problem we have
and
, so we can find the magnitude of the electric field:

The charge is negative, therefore it moves against the direction of the field lines. If the force is pushing down the charge, then the electric field lines go upward.
B) The proton charge is equal to

Therefore, the magnitude of the force acting on the proton will be

And since the proton has positive charge, the verse of the force is the same as the verse of the field, so upward.
Formulae for Kinetic energy is:
Kinetic Energy= 1/2xmassx(velocity)^2
For comparison we need to have same units,thus we convert 10g into Kg.
10g/1000=0.01Kg
Input the value of bullet in the formulae;
Kinetic Energy= 1/2x0.01kgx(400)^2
K.E=800J
Input value of the ball:
Kinetic Energy=1/2x80kgx(6.5)^2
K.E=1690J
Which means that th Energy of the ball is more than the bullet.
Answer:
Ф_cube /Ф_sphere = 3 /π
Explanation:
The electrical flow is
Ф = E A
where E is the electric field and A is the surface area
Let's shut down the electric field with Gauss's law
Фi = ∫ E .dA =
/ ε₀
the Gaussian surface is a sphere so its area is
A = 4 π r²
the charge inside is
q_{int} = Q
we substitute
E 4π r² = Q /ε₀
E = 1 / 4πε₀ Q / r²
To calculate the flow on the two surfaces
* Sphere
Ф = E A
Ф = 1 / 4πε₀ Q / r² (4π r²)
Ф_sphere = Q /ε₀
* Cube
Let's find the side value of the cube inscribed inside the sphere.
In this case the radius of the sphere is half the diagonal of the cube
r = d / 2
We look for the diagonal with the Pythagorean theorem
d² = L² + L² = 2 L²
d = √2 L
we substitute
r = √2 / 2 L
r = L / √2
L = √2 r
now we can calculate the area of the cube that has 6 faces
A = 6 L²
A = 6 (√2 r)²
A = 12 r²
the flow is
Ф = E A
Ф = 1 / 4πε₀ Q/r² (12r²)
Ф_cubo = 3 /πε₀ Q
the relationship of these two flows is
Ф_cube /Ф_sphere = 3 /π