1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Olin [163]
3 years ago
12

A 465 g block slides along a frictionless surface at a speed of 0.35 m/s. It runs into a horizontal massless spring with spring

constant 54 N/m that extends outward from a wall. It compresses the spring, then is pushed back in the opposite direction by the spring, eventually losing contact with the spring.
a) How long does the block remain in contact with the spring?
b) How would your answer change if the block's initial speed was doubled?
Physics
1 answer:
katovenus [111]3 years ago
7 0

Answer:

a) The duration, during which the block remain in contact with the spring is 0.29 s

b) The period of the simple harmonic oscillatory motion depends only on the mass and spring constant, therefore when the speed is doubled, the duration of contact remains the same as 0.29 s.

Explanation:

Mass of the block = 465 g

Surface speed = 0.35 m/s

Spring constant , k = 54 N/m

T = 2\times \pi \times \sqrt{\frac{m}{K} } = 2\times \pi \times \sqrt{\frac{0.465}{54} }  = 0.58 s

a) Since the period for the oscillatory motion is 0.58 s, then the time when the block and spring remain in contact is T/2 = 0.29 s

b) When the speed is doubled, we have

T = 2\times \pi \times \sqrt{\frac{m}{K} }

Therefore, since T is only dependent on the mass, m and the  spring constant, K, then the time it takes when the speed is doubled remain as

T /2 = 0.29 s

You might be interested in
How does the suns energy contribute to the carbon cycle
netineya [11]

Answer:

Plants are a good starting point when looking at the carbon cycle on Earth. Plants have a process called photosynthesis that enables them to take carbon dioxide out of the atmosphere and combine it with water. Using the energy of the Sun, plants make sugars and oxygen molecules.

8 0
3 years ago
Read 2 more answers
Barney walks at a velocity of 1.7 meters/second on an inclined plane, which has an angle of 18.5° with the ground. What is the h
Viktor [21]
The velocities and the speed build a triangle, where the 1.7 m/s are the hypotenuse and the x-velocity and y-velocity are the other sides. 

<span>So the x-velocity is: speed*cos(angle) </span>

<span>now plug in </span>
<span>x=1.7 m/s * cos(18.5)=1.597 m/s </span>


3 0
3 years ago
Which instrument would make rice vibrate easier, a tuba or a flute? Explain why. Hint: think about the difference between high a
algol13

Answer:

I assume the higher notes would make the rice vibrate more easily, so a flute.

8 0
3 years ago
Classes are canceled due to snow, so you take advantage of the extra time to conduct some physics experiments. You fasten a larg
IRINA_888 [86]

Answer:

Time : <u>7.96 s</u>

Distance Traveled : <u>357.8 m</u>  

Explanation:

In order to solve this problem, we first consider the accelerated motion of rocket. We will be using the subscript 1 for accelerated motion.

So, for accelerated motion, we have:

Acceleration = a₁ = 14.5 m/s²

Time Period = t₁ = 3.1 s

Initial Velocity = Vi₁ = 0 m/s    (Since, it starts from rest)

Final Velocity = Vf₁

Distance covered by sled during acceleration motion = s₁

Now, using 1st equation of motion:

Vf₁ = Vi₁ + (a₁)(t₁)

Vf₁ = 0 m/s + (14.5 m/s²)(3.1 s)

Vf₁ = 44.95 m/s

Now, using 2nd equation of motion:

s₁ = (Vi₁)(t) + (0.5)(a₁)(t₁)

s₁ = (0 m/s)(3.1 s) + (0.5)(14.5 m/s²)(3.1 s)

s₁ = 22.5 m

Now, we first consider the decelerated motion of rocket. We will be using the subscript 2 for decelerated motion.

So, for accelerated motion, we have:

Deceleration = a₂ = - 5.65 m/s²

Time Period = t₂ = ?

Initial Velocity = Vi₂ = Vf₁ = 44.95 m/s    (Since, decelerate motion starts, where accelerated motion ends)

Final Velocity = Vf₂ = 0 m/s    (Since, rocket will eventually stop)

Distance covered by sled during deceleration motion = s₂

Now, using 1st equation of motion:

Vf₂ = Vi₂ + (a₂)(t₂)

0 m/s = 44.95 m/s + (- 5.65 m/s²)(t₂)

t₂ = (44.95 m/s)/(5.65 m/s²)

<u>t₂ = 7.96 s</u>

Now, using 2nd equation of motion:

s₂ = (Vi₂)(t₂) + (0.5)(a₂)(t₂)

s₂ = (44.95 m/s)(7.96 s) + (0.5)(- 5.65 m/s²)(7.96 s)

s₂ = 357.8 m - 22.5 m

s₂ = 335.3 m

Thus, the total distance covered by sled will be:

Total Dustance = S = s₁ + s₂

S = 22.5 m + 335.3 m

<u>S = 357.8 m</u>

7 0
3 years ago
Consider heat transfer between two identical hot solid bodies and the air surrounding them. The first solid is being cooled by a
Nitella [24]

Answer:

The solution to the question above is explained below:

Explanation:

For which solid is the lumped system analysis more likely to be applicable?

<u>Answer</u>

The lumped system analysis is more likely to be applicable for the body cooled naturally.

<em>Question :Why?</em>

<u>Answer</u>

Biot number is proportional to the convection heat transfer coefficient, and it is proportional to the air velocity. When Biot no is less than 0.1 in  the case of natural convection, then lumped analysis can be applied.

<u>Further explanations:</u>

Heat is a form of energy.

Heat transfer describes the flow of heat across the boundary of a system due to temperature differences and the subsequent temperature distribution and changes. There are three different ways the heat can transfer: conduction, convection, or radiation.

Heat transfer  analysis which utilizes this idealization is known as the lumped system analysis.

The Biot number is a criterion dimensionless quantity used in heat transfer calculations which gives a direct indication of the relative importance of conduction and convection in determining the temperature history of a body being heated or cooled by convection at its surface. In heat transfer analysis, some bodies are observed to behave like a "lump" whose entire  body temperature remains essentially uniform at all times during a heat transfer process.

Conduction is the transfer of energy in the form of heat or electricity from one atom to another within an object and conduction of heat occurs when molecules increase in temperature.

Convection is a transfer of heat by the movement of a fluid. Convection occurs within liquids and gases between areas of different temperature.

7 0
4 years ago
Other questions:
  • Why do elements within a group have similar chemical properties
    9·1 answer
  • What is the difference between each distance traveled and displacement travled
    6·1 answer
  • A shot putter releases the shot some distance above the level ground with a velocity of 12.0 m/s, 51.0 ∘above the horizontal. Th
    9·1 answer
  • Your skeleton. It is there for support, protection, and movement. But you could not move your bones without the help of your ___
    12·2 answers
  • Receiver
    11·1 answer
  • What would happen if there were no friction between the girl and the slope?
    8·1 answer
  • • Most of the galaxies in the universe are moving away from
    8·1 answer
  • What is an electric fuse? What is the working principle of electric fuse?
    11·1 answer
  • Convert : <br>a) 110°C into °F <br>b) 32°F into °C <br>Please show your work if possible .<br>​
    14·1 answer
  • Why should people pay attention to scientists when making decisions?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!