Answer:
The third shell would be empty, so the eight electrons on the second level would be the outermost after the atom lost one electron
Explanation:
When an atom is bonded with other atoms, a more stable configuration must be reached, which is why the energy of the molecule is less than the energy of the individual atoms, for this to happen in general, electrons are shared or lost and gained in each atom, depending on the electronegative of the same.
If we analyze an atom within the molecule, its last shell is full, in the case of atoms with few electrons in this shell, they are lost and in the case of many electors in this shell, it gains electrons to have eight (8) in total.
When reviewing the different answers, the correct one is:
* The third shell would be empty, so the eight electrons on the second level would be the outermost after the atom lost one electron
The answer is A. voice uses a wider range of pitch and volume as compared to speaking
Choices 'a', 'c', and 'd' are true.
In choice 'b', I'm not sure what it means when it says that masses
are 'balanced'. To me, masses are only balanced when they're on
a see-saw, or on opposite ends of a rope that goes over a pulley.
Maybe the statement means that the mass of the nucleus and the
mass of the electron cloud are equal. This is way false. It takes
more than 1,800 electrons to make the mass of ONE proton or
neutron, and the most complex atom in nature only has 92 electrons
in it. So there's no way that the masses of the nucleus and the electrons
in one atom could ever be anywhere near equal.
Answer:
given , v = 300 km/hr; distance d = 1500 km; then time t = d/v = 1500/300 = 5 hrs
Explanation:
Answer:
The average velocity is
and
respectively.
Explanation:
Let's start writing the vertical position equation :

Where distance is measured in meters and time in seconds.
The average velocity is equal to the position variation divided by the time variation.
= Δx / Δt = 
For the first time interval :
t1 = 5 s → t2 = 8 s
The time variation is :

For the position variation we use the vertical position equation :

Δx = x2 - x1 = 1049 m - 251 m = 798 m
The average velocity for this interval is

For the second time interval :
t1 = 4 s → t2 = 9 s


Δx = x2 - x1 = 1495 m - 125 m = 1370 m
And the time variation is t2 - t1 = 9 s - 4 s = 5 s
The average velocity for this interval is :

Finally for the third time interval :
t1 = 1 s → t2 = 7 s
The time variation is t2 - t1 = 7 s - 1 s = 6 s
Then


The position variation is x2 - x1 = 701 m - (-1 m) = 702 m
The average velocity is
