True because friction happens when two things are rubbed against each other and it creates force and sliding something vigorously against something else can create force.
Answer:ummm ok
Explanation:I really don’t get it but ok
Answer:
v = √2G
/ R
Explanation:
For this problem we use energy conservation, the energy initiated is potential and kinetic and the final energy is only potential (infinite r)
Eo = K + U = ½ m1 v² - G m1 m2 / r1
Ef = - G m1 m2 / r2
When the body is at a distance R> Re, for the furthest point (r2) let's call it Rinf
Eo = Ef
½ m1v² - G m1
/ R = - G m1
/ R
v² = 2G
(1 / R - 1 / Rinf)
If we do Rinf = infinity 1 / Rinf = 0
v = √2G
/ R
Ef = = - G m1 m2 / R
The mechanical energy is conserved
Em = -G m1
/ R
Em = - G m1
/ R
R = int ⇒ Em = 0
When someone is holding something that has been struck or splashed by lightning, contact damage occurs.
We need additional information concerning lightning and injuries in order to identify the solution.
<h3>What types of injuries are brought on by lightning?</h3>
- Lightning is the name for a natural electrical discharge that occurs quickly and with a dazzling flash.
- It has a tremendous amount of energy.
- Lightning-related injuries can be divided into three categories: direct strikes, side splashes, and contact injuries.
- When someone is struck by lightning directly, they can get direct injury.
- When a current splashes from a neighboring object, it is called a side splash.
- When someone touches a lightning-hit object, contact harm results.
In light of this, we can say that contact injuries happen when a person is holding an object that has been struck by lightning or splashed by it.
Learn more about the lightning and harm here:
brainly.com/question/28055828
#SPJ1