Answer:
The average current that this cell phone draws when turned on is 0.451 A.
Explanation:
Given;
voltage of the phone, V = 3.7 V
electrical energy of the phone battery, E = 3.15 x 10⁴ J
duration of battery energy, t = 5.25 h
The power the cell phone draws when turned on, is the rate of energy consumption, and this is calculated as follows;

where;
P is power in watts
E is energy in Joules
t is time in seconds

The average current that this cell phone draws when turned on:
P = IV

Therefore, the average current that this cell phone draws when turned on is 0.451 A.
Answer:

Explanation:
= Avogadro's number = 
e = Charge of electron = 
k = Coulomb constant = 
Z = Atomic number of water = 18
M = Molar mass of water = 0.018 kg/mol
m = Mass of person
The charge is given by

Total number of protons and electrons in each sphere




Electrical force is given by

The electrostatic force of attraction between them is 
Answer : I hope this helps !
The Effort Force is the force applied to a machine. Work input is the work done on a machine. The work input of a machine is equal to the effort force times the distance over which the effort force is exerted.
The length of the inclined plane is approximately 12 ft
The situation forms a right angle triangle.
<h3>Right triangle</h3>
Right triangle have one of its angle as 90 degrees.
Therefore,
The length of the inclined plane is the hypotenuse of the triangle. The length of the inclined plane can be found using trigonometric ratios.
height = 4 ft
angle(∅) = 19.45°
sin 19.45 = 4 / h
h = 4 / 0.33298412235
h = 12.0125847796
h = 12 ft
Therefore, the length of the inclined plane is approximately 12 ft
learn more on inclined plane:brainly.com/question/14163589?referrer=searchResults
Answer:
x_{cm} = 4.644 10⁶ m
Explanation:
The center of mass is given by the equation
= 1 /
∑
Where M_{total} is the total masses of the system,
is the distance between the particles and
is the masses of each body
Let's apply this equation to our problem
M = Me + m
M = 5.98 10²⁴ + 7.36 10²²
M = 605.36 10²² kg
Let's locate a reference system located in the center of the Earth
Let's calculate
x_{cm} = 1 / 605.36 10²² [Me 0 + 7.36 10²² 3.82 10⁸]
x_{cm} = 4.644 10⁶ m