<em>Answer:</em>
<em>When </em><em>a </em><em>body </em><em>is </em><em>moving </em><em>on </em><em>a </em><em>circle </em><em>it </em><em>is </em><em>accelerating </em><em>because </em><em>centripetal </em><em>acceleration</em><em> </em><em>is </em><em>always </em><em>acting </em><em>on </em><em>it </em><em>towards </em><em>the </em><em>center.</em>
<em>Please </em><em>see</em><em> the</em><em> attached</em><em> picture</em><em>.</em><em>.</em><em>.</em>
<em>From </em><em>the </em><em>above </em><em>diagram,</em><em>we </em><em>can </em><em>say </em><em>the </em><em>acceleration</em><em> </em><em>is </em><em>always </em><em>acting </em><em>on </em><em>the </em><em>body </em><em>when </em><em>it </em><em>moves </em><em>in </em><em>a </em><em>circle.</em>
<em>Hope </em><em>this </em><em>helps.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
<em>Good </em><em>luck</em><em> on</em><em> your</em><em> assignment</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
Answer:
t = 1.659s
Explanation:
We can use the kinematics equations to solve this questions:
v = u + at

where v = Final Velocity, u = initial velocity, a = acceleration, t = time, s = displacement
a) Given information from the question,
u =
(Convert km/h to m/s first)
a = 
s = 35m
Now we can substitute these values into the 2nd kinematics equation to find v, final velocity.

b) Now we have the final velocity, we can substitute the values into the first kinematics equation to find t , the time taken.
v = u + at
22.761 = 19.444 + 2t
2t = 22.761 - 19.444
t =
t = 1.659s
Answer:

Explanation:
The distance of Earth from the Sun is
and of Mars from the Sun is
. Let assume that both planets have circular orbits. The centripetal accelaration can be found by using the following expression:

Since planet has translation at constant speed, this formula is applied to compute corresponding speeds:

Earth:


Mars:


Now, centripetal accelarations can be found:
Earth:


Mars:


The ratio of Earth's centripetal acceleration to Mars's centripetal acceleration is:


Given :
Whole-body dose of 8.4 mGy from gamma-rays and 1.2 mGy from 80-Kev neutrons.
To Find :
The effective dose to a worker.
Solution :
By the given information effective dose to a worker is given by :
E.D = ( 8.4 × 1.2 × 0.12 ) + ( 1.2 × 1 × 1 )
E.D = 1.2096 + 1.2
E.D = 2.4096
Therefore, the effective dose to a worker is 2.4096 .