I think the correct answer from the choices listed above is option B. When calculating the power bill, power companies use kilowatt-hours. This unit is a derived unit of energy equal to 3.6 MJ. If energy is being transmitted or used at a constant rate (power) over a period of time, the total energy in kilowatt-hours is the product of the power in kilowatts and the time.
work done is product of force and displacement of point of application of force
so here we have to check the product of force and displacement both
Now we will put the least to maximum work in the following order
1. -A man exerts strenuous effort in pushing a stationary wall
2. -A flea pushes a speck of dirt 1 cm
3. -A farmer pushes a 2 kg wheelbarrow 20 m
4. -A cannon launches a 3 kg cannonball a distance of 200
5. -A 2000 kg car travels 400 m down a road
6. -Space shuttle Atlantis launches from the ground into near-Earth orbit
football hemets have pads that are filled with air and thick foam so when they are hit the foam asorbs the hit and the air keeps the hard outer shell of the helmet from hiting the players head
Answer:
D. from a separate pool than is the control group.
Explanation:
in the picture the person answers is backwards but...
hope this helps have a nice day
'H' = height at any time
'T' = time after both actions
'G' = acceleration of gravity
'S' = speed at the beginning of time
Let's call 'up' the positive direction.
Let's assume that the tossed stone is tossed from the ground, not from the tower.
For the stone dropped from the 50m tower:
H = +50 - (1/2) G T²
For the stone tossed upward from the ground:
H = +20T - (1/2) G T²
When the stones' paths cross, their <em>H</em>eights are equal.
50 - (1/2) G T² = 20T - (1/2) G T²
Wow ! Look at that ! Add (1/2) G T² to each side of that equation,
and all we have left is:
50 = 20T Isn't that incredible ? ! ?
Divide each side by 20 :
<u>2.5 = T</u>
The stones meet in the air 2.5 seconds after the drop/toss.
I want to see something:
What is their height, and what is the tossed stone doing, when they meet ?
Their height is +50 - (1/2) G T² = 19.375 meters
The speed of the tossed stone is +20 - (1/2) G T = +7.75 m/s ... still moving up.
I wanted to see whether the tossed stone had reached the peak of the toss,
and was falling when the dropped stone overtook it. The answer is no ... the
dropped stone was still moving up at 7.75 m/s when it met the dropped one.