1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
inna [77]
3 years ago
10

15. If an 800.-kg sports car slows to 13.0 m/s to check out an accident scene and the

Physics
1 answer:
goldfiish [28.3K]3 years ago
5 0

The final combined velocity after the collision is 20.2 m/s

Explanation:

We can solve this problem by using the law of conservation of momentum: in fact, in absence of external forces, the total momentum of the two car and of the truck must be conserved before and after the collision.

This means that we can write the following equation:

p_i = p_f\\m_1 u_1 + m_2 u_2 = (m_1+m_2)v  

where:  

m_1 = 800 kg is the mass of the sport car

u_1 = 13.0 m/s is the initial velocity of the car (taking its direction as positive  direction)

m_2 = 1200 kg is the mass of the truck

u_2 = 25.0 m/s is the initial velocity of the truck

v is the final combined velocity of the car and the truck, after the collision

Re-arranging the equation and substituting the values, we find the velocity after the collision:

v=\frac{m_1 u_1 + m_2 u_2}{m_1+m_2}=\frac{(800)(13)+(1200)(25)}{800+1200}=20.2 m/s

And the positive sign indicates their final direction is the same as the initial direction of the two vehicles.

Learn more about momentum here:

brainly.com/question/7973509  

brainly.com/question/6573742  

brainly.com/question/2370982  

brainly.com/question/9484203  

#LearnwithBrainly

You might be interested in
A baseball player friend of yours wants to determine his pitching speed. You have him stand on a ledge and throw the ball horizo
Alla [95]

Answer:

v_{ox}= 19.6\ m/s

Explanation:

Data provided in the question:

Height above the ground, H= 5.0m

Range of the ball, R= 20 m

Initial horizontal velocity = v_{ox}

Initial vertical velocity= v_{oy}  (Since ball was thrown horizontally only)

Acceleration acting horizontally, a_x = 0 m/s²  [ Since no acceleration acts horizontally) ]

Vertical Acceleration, a_y = 9.8 m/s² (Since only gravity acts on it)

Let 't' be the time taken to reach ground

Therefore, using equations of motion, we have

H= v_{oy}t+\frac{1}{2}a_yt^2

5= (0)t+\frac{1}{2}(9.8)t^2

t= \frac{10}{9.8}=1.02 s

Then using Equations of motion for horizontal motion,

R= v_{ox}t+\frac{1}{2}a_xt^2

20= v_{ox}(1.02)+\frac{1}{2}(0)(1.02)^2

v_{ox}= 19.6\ m/s

4 0
3 years ago
How does the angle of launch affect the kinetic energy of a rubber band?​
Lady_Fox [76]

Answer:

The angle of launch of the rubber band affects the initial velocity. The more the rubber band is stretched the more force it applies to return to equilibrium and the more kinetic energy that results in.

3 0
3 years ago
Can somebody please help?
DedPeter [7]

Answer:

Im not sure

Explanation:

I don't take physics cuz im in 9th grade. so. idk but I will find out and come back with an answer.

7 0
3 years ago
An ore sample weighs 17.50 N in air. When the sample
zysi [14]

Answer with Explanation:

We are given that

Weight of an ore sample=17.5 N

Tension in the cord=11.2 N

We have to find the total volume and the density of the sample.

We know that

Tension, T=W-F_b

F_b=buoyancy force

T=Tension force

W=Weight

By using the formula

11.2=17.5-F_b

F_b=17.5-11.2=6.3 N

F_b=V_{object}\times \rho_{water}\cdot g

Where

V_{object}=Volume of object

\rho_{water}=1000 kgm^{-3}=Density of water

g=9.8 ms^{-2}=Acceleration due to gravity

Substitute the values then we get

6.3=9.8\times 1000\times V_{object}

V_{object}=\frac{6.3}{9.8\times 1000}=6.43\times 10^{-4} m^3

Volume of sample=6.43\times 10^{-4} m^3

Density of sample,\rho_{object}=\frac{Mass}{volume_{object}}

Where mass of ore sample=1.79 kg

Substitute the values then, we get

\rho_{object}=\frac{1.79}{6.43\times 10^{-4}}=2.78\times 10^3 kg/m^3

Density of the sample=2.78\times 10^{3} kgm^{-3}

7 0
3 years ago
Type of force that holds the nucleus of an atom together
Kamila [148]

Answer:

Nuclear Forces

Explanation:

The type  of force that holds the nucleus of an atom together is called Nuclear Forces.

7 0
3 years ago
Other questions:
  • How many atoms of oxygen in the chemical formula 2 Ca(ClO2)2?
    15·1 answer
  • PLEASE HELP ME Color corresponds to the ______________ of light waves. wave speed cycles wavelength
    13·1 answer
  • Th e heat capacity of air is much smaller than that of water, and relatively modest amounts of heat are needed to change its tem
    12·2 answers
  • Which of the following systems reflects a decrease in entropy? A. burning match B. freezing water C. evaporating alcohol D. brea
    9·2 answers
  • Which element is this?
    8·2 answers
  • Please help ASAP...A satellite takes 24 hours to complete one orbit whilst travelling at a speed of 12 km/s. at what height abov
    15·1 answer
  • Which of the four fundamental forces is responsible for holding together the molecules of the pizza dough as it is spinning in t
    7·1 answer
  • Mateo and Jackie were on a playground rolling some different-sized balls to get them to crash. They used a tennis ball (the same
    11·1 answer
  • 7 sentences<br> about degradable<br>​
    5·1 answer
  • Which of the following choices correctly pairs the organism with its phylum?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!