<u>Answer:</u> The half life of the sample of silver-112 is 3.303 hours.
<u>Explanation:</u>
All radioactive decay processes undergoes first order reaction.
To calculate the rate constant for first order reaction, we use the integrated rate law equation for first order, which is:
![k=\frac{2.303}{t}\log \frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%20%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = ?
t = time taken = 1.52 hrs
= Initial concentration of reactant = 100 g
[A] = Concentration of reactant left after time 't' = [100 - 27.3] = 72.7 g
Putting values in above equation, we get:

To calculate the half life period of first order reaction, we use the equation:

where,
= half life period of first order reaction = ?
k = rate constant = 
Putting values in above equation, we get:

Hence, the half life of the sample of silver-112 is 3.303 hours.
Answer:
Heat is something you can't control
Explanation:
Plastic is something you could control like moving it around
Answer:
i am not sure but its 2 ican"t qry
Explanation:
Ans: As changes in energy levels of electrons increase, the frequencies of atomic line spectra they emit will <u>increase.</u>
The energy (E) is related to the frequency (ν) by the following equation:
E = hν
where h = planck's constant
The change in energy i between levels is:
ΔΕ = h(Δν) -----(1)
Based on the above equation, as the changes in energy levels increase, the frequency of emitted radiation will also increase.
Answer:
1027.9 mL
Explanation:
Formula P1 x V1 / T1 = P2 x V2 / T2
Fill in what you know
Pressure is constant so no need to put that in making the formula
V1 / T1 = V2 / T2
Voulme 1= 950 mL
Volume 2= ?
Temperature 1 = 25 C
Temperature 2 = 50 C
Explanation:
Formula P1 x V1 / T1 = P2 x V2 / T2
Fill in what you know
Pressure is constant so no need to put that in making the formula
V1 / T1 = V2 / T2
Voulme 1= 950 mL
Volume 2= ?
Temperature 1 = 25 C
Temperature 2 = 50 C