It’s how much pressure it has give me brainly plz
The number of hydrogen atoms that are in 7.80 moles of ammonium sulfide are 3.756 x 10^25 atoms
<u>calculation</u>
Step 1: calculate the moles of H in (NH4)2S
since there are 8 atoms of H in (NH4)2S the moles of
H = 8 x7.80 = 62.4 mole
Step 2: use of Avogadro's law constant to determine the number of H atom
that is 1 mole = 6.02 x10^23 atoms
62.4 moles=? atoms
= [ 62.4 x 6.02 x10^23]/ 1 mole= 3.756 x10^25 atoms
Answer:
The value of Ka 
It is a weak acid
Explanation:
From the question we are told that
The concentration of ![[HClO_2]=0.24M](https://tex.z-dn.net/?f=%5BHClO_2%5D%3D0.24M)
The concentration of ![[H^+]=0.051M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.051M)
The concentration of ![[ClO_2^-]=0.051M](https://tex.z-dn.net/?f=%5BClO_2%5E-%5D%3D0.051M)
Generally the equation for the ionic dissociation of
is

The equilibrium constant is mathematically represented as

![= \frac{[H^+][ClO_2^-]}{[HClO_2]}](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B%5BH%5E%2B%5D%5BClO_2%5E-%5D%7D%7B%5BHClO_2%5D%7D)
Substituting values since all value of concentration are at equilibrium


Since the value of is less than 1 it show that in water it dose not completely
disassociated so it an acid that is weak
Answer:
is the maximum velocity of this reaction.
Explanation:
Michaelis–Menten 's equation:
![v=V_{max}\times \frac{[S]}{K_m+[S]}=k_{cat}[E_o]\times \frac{[S]}{K_m+[S]}](https://tex.z-dn.net/?f=v%3DV_%7Bmax%7D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7BK_m%2B%5BS%5D%7D%3Dk_%7Bcat%7D%5BE_o%5D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7BK_m%2B%5BS%5D%7D)
![V_{max}=k_{cat}[E_o]](https://tex.z-dn.net/?f=V_%7Bmax%7D%3Dk_%7Bcat%7D%5BE_o%5D)
v = rate of formation of products =
[S] = Concatenation of substrate
= Michaelis constant
= Maximum rate achieved
= Catalytic rate of the system
= Initial concentration of enzyme
We have :


![[S]=0.110 mol/dm^3](https://tex.z-dn.net/?f=%5BS%5D%3D0.110%20mol%2Fdm%5E3)
![v=V_{max}\times \frac{[S]}{K_m+[S]}](https://tex.z-dn.net/?f=v%3DV_%7Bmax%7D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7BK_m%2B%5BS%5D%7D)
![1.15\times 10^{-3} mol/dm^3 s=V_{max}\times \frac{0.110 mol/dm^3}{[(0.045 mol/dm^3)+(0.110 mol/dm^3)]}](https://tex.z-dn.net/?f=1.15%5Ctimes%2010%5E%7B-3%7D%20mol%2Fdm%5E3%20s%3DV_%7Bmax%7D%5Ctimes%20%5Cfrac%7B0.110%20mol%2Fdm%5E3%7D%7B%5B%280.045%20mol%2Fdm%5E3%29%2B%280.110%20mol%2Fdm%5E3%29%5D%7D)
![V_{max}=\frac{1.15\times 10^{-3} mol/dm^3 s\times [(0.045 mol/dm^3)+(0.110 mol/dm^3)]}{0.110 mol/dm^3}=1.620\times 10^{-3} mol/dm^3 s](https://tex.z-dn.net/?f=V_%7Bmax%7D%3D%5Cfrac%7B1.15%5Ctimes%2010%5E%7B-3%7D%20mol%2Fdm%5E3%20s%5Ctimes%20%5B%280.045%20mol%2Fdm%5E3%29%2B%280.110%20mol%2Fdm%5E3%29%5D%7D%7B0.110%20mol%2Fdm%5E3%7D%3D1.620%5Ctimes%2010%5E%7B-3%7D%20mol%2Fdm%5E3%20s)
is the maximum velocity of this reaction.
Inner planets are rockier and outer planets are gaseous. Hope this helps! Can I have brainliest please