Answer:
The bohr's model is the primitive model for the hydrogen atom, comparatively to the atom of valence shell. And it is derived from the hydrogen atom of the first approximation by using the quantum mechanics.
Basically, the model state that the electron revolved around in circular orbit in atom around the central nucleus. And it can be fixed in the circular orbit at the set of discrete distance at the nucleus.
Answer:
the two vehicles will be moving at a speed of 6.16 m/s
Explanation:
This is a case of completely inelastic collision, therefore, the conservation of momentum can be written as:

which given the information provided results into:

Answer:
The found acceleration in terms of h and t is:

Explanation:
(The complete question is given in the attached picture. We need to find the acceleration in terms of h and t in this question)
We are given 3 stages of movement of elevator. We'll first model them each of the stage one by one to find the height covered in each stage. After that we'll find the total height covered by adding heights covered in each stage, and equate it to Total height h. From that we can find the formula for acceleration.
<h3>
</h3><h3>
Stage 1</h3>
Constant acceleration, starts from rest.
Distance = 
Velocity = 
<h3>Stage 2</h3>
Constant velocity where
Velocity = 
Distance =
<h3>

</h3><h3 /><h3>Stage 3</h3>
Constant deceleration where
Velocity = 
Distance =

<h3>Total Height</h3>
Total height = y₁ + y₂ + y₃
Total height = 
<h3 /><h3>Acceleration</h3>
Find acceleration by rearranging the found equation of total height.
Total Height = h
h = 5a(t₁)²

Answer:
the answer is C
Explanation:
The car, first is at rest and if you don't accelerate it won't move. When to hit the gas it will accelerate from rest