<span>3) P4O10 and P2O5
The mass of the P4O10 divided by the mass of the P2O5=2, and if you multiply the number of atoms in the P2O5 by 2, you get the P4O10, thus P2O5 is its empirical formula.</span>
When two element combine to form more than one compound i hope this helps you with work have a nice day :)
The main use of litmus is to test whether a solution is acidic or basic. Blue litmus paper turns red under acidic conditions and red litmus paper turns blue under basic or alkaline conditions, with the color change occurring over the pH range 4.5–8.3 at 25 °C (77 °F).
Answer:
The pH is equal to 4.41
Explanation:
Since HClO is a weak acid, its dissociation in aqueous medium is:
HClO ⇄ ClO- + H+
start: 0.05 0 0
change -x +x +x
balance 0.05-x x x
As it is a weak acid it dissociates very little, in its ClO- and H + ions, so the change is negative, where x is a degree of dissociation.
the acidity constant when equilibrium is reached is equal to:
![Ka=\frac{[ClO-]*[H+]}{[HClO]}=\frac{x*x}{0.05-x}=3x10^{-8}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BClO-%5D%2A%5BH%2B%5D%7D%7B%5BHClO%5D%7D%3D%5Cfrac%7Bx%2Ax%7D%7B0.05-x%7D%3D3x10%5E%7B-8%7D)
The 0.05-x fraction can be approximated to 0.05, because the ionized fraction (x) is very small, therefore we have:

clearing the x and calculating its value we have:
![x=3.87x10^{-5}=[H+]=[ClO-]](https://tex.z-dn.net/?f=x%3D3.87x10%5E%7B-5%7D%3D%5BH%2B%5D%3D%5BClO-%5D)
the pH can be calculated by:
![pH=-log[H+]=-log[3.87x10^{-5}]=4.41](https://tex.z-dn.net/?f=pH%3D-log%5BH%2B%5D%3D-log%5B3.87x10%5E%7B-5%7D%5D%3D4.41)
Answer:
See Explanation
Explanation:
Ionization energy refers to the energy required to remove an electron from an atom. Metals have lower ionization energy than non metals since ionization energy increases across a period.
One thing that we must have in mind is that it takes much more energy to remove an electron from an inner filled shell than it takes to remove an electron from an outermost incompletely filled shell.
Now let us consider the case of magnesium which has two outermost electrons. Between IE2 and IE3 we have now moved to an inner filled shell(IE3 refers to removal of electrons from the inner second shell) and a lot of energy is required to remove an electron from this inner filled shell, hence the jump.
For aluminium having three outermost electrons, there is a jump between IE3 and IE4 because IE4 deals with electron removal from a second inner filled shell and a lot of energy is involved in the process hence the jump.
Hence a jump occurs each time electrons are removed from an inner filled shell.