Since there is no weight, I would assume that this is a 100g of pure compound.
Okay so I would be changing the percentage to gram to solve for the mole.
So
40.0g C (1 mol C/12.01 g C) = 3.33 mol C
6.73g H (1 mol H/1.01 g H ) = 6.66 mol H
53.3g O (1 mol O/16.00 g O) = 3.33 mol O
With that, two of our moles is 3.33, so we consider that are our 1, as it is also the lowest. Therefore the empirical formula is CH2O
I believe it’s 2? Because it’s saying read the temperature. Which is basically saying look at what state the water is in. Ex: hot or cold
Answer:
Equilibrium concentrations of the gases are



Explanation:
We are given that for the equilibrium

Temperature, 
Initial concentration of



We have to find the equilibrium concentration of gases.
After certain time
2x number of moles of reactant reduced and form product
Concentration of



At equilibrium
Equilibrium constant
![K_c=\frac{product}{Reactant}=\frac{[H_2]^2[S_2]}{[H_2S]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7Bproduct%7D%7BReactant%7D%3D%5Cfrac%7B%5BH_2%5D%5E2%5BS_2%5D%7D%7B%5BH_2S%5D%5E2%7D)
Substitute the values



By solving we get

Now, equilibrium concentration of gases



Color they look the same hope this helps.